This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ffnov | |- ( F : ( A X. B ) --> C <-> ( F Fn ( A X. B ) /\ A. x e. A A. y e. B ( x F y ) e. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv | |- ( F : ( A X. B ) --> C <-> ( F Fn ( A X. B ) /\ A. w e. ( A X. B ) ( F ` w ) e. C ) ) |
|
| 2 | fveq2 | |- ( w = <. x , y >. -> ( F ` w ) = ( F ` <. x , y >. ) ) |
|
| 3 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 4 | 2 3 | eqtr4di | |- ( w = <. x , y >. -> ( F ` w ) = ( x F y ) ) |
| 5 | 4 | eleq1d | |- ( w = <. x , y >. -> ( ( F ` w ) e. C <-> ( x F y ) e. C ) ) |
| 6 | 5 | ralxp | |- ( A. w e. ( A X. B ) ( F ` w ) e. C <-> A. x e. A A. y e. B ( x F y ) e. C ) |
| 7 | 6 | anbi2i | |- ( ( F Fn ( A X. B ) /\ A. w e. ( A X. B ) ( F ` w ) e. C ) <-> ( F Fn ( A X. B ) /\ A. x e. A A. y e. B ( x F y ) e. C ) ) |
| 8 | 1 7 | bitri | |- ( F : ( A X. B ) --> C <-> ( F Fn ( A X. B ) /\ A. x e. A A. y e. B ( x F y ) e. C ) ) |