This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015) (Revised by AV, 6-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasbas.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasbas.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasbas.f | |- ( ph -> F : V -onto-> B ) |
||
| imasbas.r | |- ( ph -> R e. Z ) |
||
| imasds.e | |- E = ( dist ` R ) |
||
| imasds.d | |- D = ( dist ` U ) |
||
| imasdsval.x | |- ( ph -> X e. B ) |
||
| imasdsval.y | |- ( ph -> Y e. B ) |
||
| imasdsval.s | |- S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
||
| imasds.u | |- T = ( E |` ( V X. V ) ) |
||
| Assertion | imasdsval2 | |- ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasbas.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasbas.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasbas.f | |- ( ph -> F : V -onto-> B ) |
|
| 4 | imasbas.r | |- ( ph -> R e. Z ) |
|
| 5 | imasds.e | |- E = ( dist ` R ) |
|
| 6 | imasds.d | |- D = ( dist ` U ) |
|
| 7 | imasdsval.x | |- ( ph -> X e. B ) |
|
| 8 | imasdsval.y | |- ( ph -> Y e. B ) |
|
| 9 | imasdsval.s | |- S = { h e. ( ( V X. V ) ^m ( 1 ... n ) ) | ( ( F ` ( 1st ` ( h ` 1 ) ) ) = X /\ ( F ` ( 2nd ` ( h ` n ) ) ) = Y /\ A. i e. ( 1 ... ( n - 1 ) ) ( F ` ( 2nd ` ( h ` i ) ) ) = ( F ` ( 1st ` ( h ` ( i + 1 ) ) ) ) ) } |
|
| 10 | imasds.u | |- T = ( E |` ( V X. V ) ) |
|
| 11 | 1 2 3 4 5 6 7 8 9 | imasdsval | |- ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) ) |
| 12 | 10 | coeq1i | |- ( T o. g ) = ( ( E |` ( V X. V ) ) o. g ) |
| 13 | 9 | ssrab3 | |- S C_ ( ( V X. V ) ^m ( 1 ... n ) ) |
| 14 | 13 | sseli | |- ( g e. S -> g e. ( ( V X. V ) ^m ( 1 ... n ) ) ) |
| 15 | elmapi | |- ( g e. ( ( V X. V ) ^m ( 1 ... n ) ) -> g : ( 1 ... n ) --> ( V X. V ) ) |
|
| 16 | frn | |- ( g : ( 1 ... n ) --> ( V X. V ) -> ran g C_ ( V X. V ) ) |
|
| 17 | cores | |- ( ran g C_ ( V X. V ) -> ( ( E |` ( V X. V ) ) o. g ) = ( E o. g ) ) |
|
| 18 | 14 15 16 17 | 4syl | |- ( g e. S -> ( ( E |` ( V X. V ) ) o. g ) = ( E o. g ) ) |
| 19 | 12 18 | eqtrid | |- ( g e. S -> ( T o. g ) = ( E o. g ) ) |
| 20 | 19 | oveq2d | |- ( g e. S -> ( RR*s gsum ( T o. g ) ) = ( RR*s gsum ( E o. g ) ) ) |
| 21 | 20 | mpteq2ia | |- ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
| 22 | 21 | rneqi | |- ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
| 23 | 22 | a1i | |- ( n e. NN -> ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) ) |
| 24 | 23 | iuneq2i | |- U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) = U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) |
| 25 | 24 | infeq1i | |- inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) , RR* , < ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( E o. g ) ) ) , RR* , < ) |
| 26 | 11 25 | eqtr4di | |- ( ph -> ( X D Y ) = inf ( U_ n e. NN ran ( g e. S |-> ( RR*s gsum ( T o. g ) ) ) , RR* , < ) ) |