This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real numbers restricted to RR* \ { -oo } form a commutative monoid. They are not a group because 1 + +oo = 2 + +oo even though 1 =/= 2 . (Contributed by Mario Carneiro, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| Assertion | xrs1cmn | |- R e. CMnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrs1mnd.1 | |- R = ( RR*s |`s ( RR* \ { -oo } ) ) |
|
| 2 | 1 | xrs1mnd | |- R e. Mnd |
| 3 | eldifi | |- ( x e. ( RR* \ { -oo } ) -> x e. RR* ) |
|
| 4 | eldifi | |- ( y e. ( RR* \ { -oo } ) -> y e. RR* ) |
|
| 5 | xaddcom | |- ( ( x e. RR* /\ y e. RR* ) -> ( x +e y ) = ( y +e x ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( x e. ( RR* \ { -oo } ) /\ y e. ( RR* \ { -oo } ) ) -> ( x +e y ) = ( y +e x ) ) |
| 7 | 6 | rgen2 | |- A. x e. ( RR* \ { -oo } ) A. y e. ( RR* \ { -oo } ) ( x +e y ) = ( y +e x ) |
| 8 | difss | |- ( RR* \ { -oo } ) C_ RR* |
|
| 9 | xrsbas | |- RR* = ( Base ` RR*s ) |
|
| 10 | 1 9 | ressbas2 | |- ( ( RR* \ { -oo } ) C_ RR* -> ( RR* \ { -oo } ) = ( Base ` R ) ) |
| 11 | 8 10 | ax-mp | |- ( RR* \ { -oo } ) = ( Base ` R ) |
| 12 | xrex | |- RR* e. _V |
|
| 13 | 12 | difexi | |- ( RR* \ { -oo } ) e. _V |
| 14 | xrsadd | |- +e = ( +g ` RR*s ) |
|
| 15 | 1 14 | ressplusg | |- ( ( RR* \ { -oo } ) e. _V -> +e = ( +g ` R ) ) |
| 16 | 13 15 | ax-mp | |- +e = ( +g ` R ) |
| 17 | 11 16 | iscmn | |- ( R e. CMnd <-> ( R e. Mnd /\ A. x e. ( RR* \ { -oo } ) A. y e. ( RR* \ { -oo } ) ( x +e y ) = ( y +e x ) ) ) |
| 18 | 2 7 17 | mpbir2an | |- R e. CMnd |