This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum in a substructure is the same as the group sum in the original structure. The only requirement on the substructure is that it contain the identity element; neither G nor H need be groups. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumress.b | |- B = ( Base ` G ) |
|
| gsumress.o | |- .+ = ( +g ` G ) |
||
| gsumress.h | |- H = ( G |`s S ) |
||
| gsumress.g | |- ( ph -> G e. V ) |
||
| gsumress.a | |- ( ph -> A e. X ) |
||
| gsumress.s | |- ( ph -> S C_ B ) |
||
| gsumress.f | |- ( ph -> F : A --> S ) |
||
| gsumress.z | |- ( ph -> .0. e. S ) |
||
| gsumress.c | |- ( ( ph /\ x e. B ) -> ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
||
| Assertion | gsumress | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumress.b | |- B = ( Base ` G ) |
|
| 2 | gsumress.o | |- .+ = ( +g ` G ) |
|
| 3 | gsumress.h | |- H = ( G |`s S ) |
|
| 4 | gsumress.g | |- ( ph -> G e. V ) |
|
| 5 | gsumress.a | |- ( ph -> A e. X ) |
|
| 6 | gsumress.s | |- ( ph -> S C_ B ) |
|
| 7 | gsumress.f | |- ( ph -> F : A --> S ) |
|
| 8 | gsumress.z | |- ( ph -> .0. e. S ) |
|
| 9 | gsumress.c | |- ( ( ph /\ x e. B ) -> ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
|
| 10 | oveq1 | |- ( y = .0. -> ( y .+ x ) = ( .0. .+ x ) ) |
|
| 11 | 10 | eqeq1d | |- ( y = .0. -> ( ( y .+ x ) = x <-> ( .0. .+ x ) = x ) ) |
| 12 | 11 | ovanraleqv | |- ( y = .0. -> ( A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) |
| 13 | 6 8 | sseldd | |- ( ph -> .0. e. B ) |
| 14 | 9 | ralrimiva | |- ( ph -> A. x e. B ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
| 15 | 12 13 14 | elrabd | |- ( ph -> .0. e. { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) |
| 16 | 15 | snssd | |- ( ph -> { .0. } C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) |
| 17 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 18 | eqid | |- { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } = { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } |
|
| 19 | 1 17 2 18 | mgmidsssn0 | |- ( G e. V -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } C_ { ( 0g ` G ) } ) |
| 20 | 4 19 | syl | |- ( ph -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } C_ { ( 0g ` G ) } ) |
| 21 | 20 15 | sseldd | |- ( ph -> .0. e. { ( 0g ` G ) } ) |
| 22 | elsni | |- ( .0. e. { ( 0g ` G ) } -> .0. = ( 0g ` G ) ) |
|
| 23 | 21 22 | syl | |- ( ph -> .0. = ( 0g ` G ) ) |
| 24 | 23 | sneqd | |- ( ph -> { .0. } = { ( 0g ` G ) } ) |
| 25 | 20 24 | sseqtrrd | |- ( ph -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } C_ { .0. } ) |
| 26 | 16 25 | eqssd | |- ( ph -> { .0. } = { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) |
| 27 | 11 | ovanraleqv | |- ( y = .0. -> ( A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> A. x e. S ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) ) |
| 28 | 6 | sselda | |- ( ( ph /\ x e. S ) -> x e. B ) |
| 29 | 28 9 | syldan | |- ( ( ph /\ x e. S ) -> ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
| 30 | 29 | ralrimiva | |- ( ph -> A. x e. S ( ( .0. .+ x ) = x /\ ( x .+ .0. ) = x ) ) |
| 31 | 27 8 30 | elrabd | |- ( ph -> .0. e. { y e. S | A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) |
| 32 | 3 1 | ressbas2 | |- ( S C_ B -> S = ( Base ` H ) ) |
| 33 | 6 32 | syl | |- ( ph -> S = ( Base ` H ) ) |
| 34 | fvex | |- ( Base ` H ) e. _V |
|
| 35 | 33 34 | eqeltrdi | |- ( ph -> S e. _V ) |
| 36 | 3 2 | ressplusg | |- ( S e. _V -> .+ = ( +g ` H ) ) |
| 37 | 35 36 | syl | |- ( ph -> .+ = ( +g ` H ) ) |
| 38 | 37 | oveqd | |- ( ph -> ( y .+ x ) = ( y ( +g ` H ) x ) ) |
| 39 | 38 | eqeq1d | |- ( ph -> ( ( y .+ x ) = x <-> ( y ( +g ` H ) x ) = x ) ) |
| 40 | 37 | oveqd | |- ( ph -> ( x .+ y ) = ( x ( +g ` H ) y ) ) |
| 41 | 40 | eqeq1d | |- ( ph -> ( ( x .+ y ) = x <-> ( x ( +g ` H ) y ) = x ) ) |
| 42 | 39 41 | anbi12d | |- ( ph -> ( ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) ) ) |
| 43 | 33 42 | raleqbidv | |- ( ph -> ( A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) <-> A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) ) ) |
| 44 | 33 43 | rabeqbidv | |- ( ph -> { y e. S | A. x e. S ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) |
| 45 | 31 44 | eleqtrd | |- ( ph -> .0. e. { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) |
| 46 | 45 | snssd | |- ( ph -> { .0. } C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) |
| 47 | 3 | ovexi | |- H e. _V |
| 48 | 47 | a1i | |- ( ph -> H e. _V ) |
| 49 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 50 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 51 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 52 | eqid | |- { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } |
|
| 53 | 49 50 51 52 | mgmidsssn0 | |- ( H e. _V -> { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } C_ { ( 0g ` H ) } ) |
| 54 | 48 53 | syl | |- ( ph -> { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } C_ { ( 0g ` H ) } ) |
| 55 | 54 45 | sseldd | |- ( ph -> .0. e. { ( 0g ` H ) } ) |
| 56 | elsni | |- ( .0. e. { ( 0g ` H ) } -> .0. = ( 0g ` H ) ) |
|
| 57 | 55 56 | syl | |- ( ph -> .0. = ( 0g ` H ) ) |
| 58 | 57 | sneqd | |- ( ph -> { .0. } = { ( 0g ` H ) } ) |
| 59 | 54 58 | sseqtrrd | |- ( ph -> { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } C_ { .0. } ) |
| 60 | 46 59 | eqssd | |- ( ph -> { .0. } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) |
| 61 | 26 60 | eqtr3d | |- ( ph -> { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } = { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) |
| 62 | 61 | sseq2d | |- ( ph -> ( ran F C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } <-> ran F C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) ) |
| 63 | 23 57 | eqtr3d | |- ( ph -> ( 0g ` G ) = ( 0g ` H ) ) |
| 64 | 37 | seqeq2d | |- ( ph -> seq m ( .+ , F ) = seq m ( ( +g ` H ) , F ) ) |
| 65 | 64 | fveq1d | |- ( ph -> ( seq m ( .+ , F ) ` n ) = ( seq m ( ( +g ` H ) , F ) ` n ) ) |
| 66 | 65 | eqeq2d | |- ( ph -> ( z = ( seq m ( .+ , F ) ` n ) <-> z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) |
| 67 | 66 | anbi2d | |- ( ph -> ( ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) <-> ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 68 | 67 | rexbidv | |- ( ph -> ( E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) <-> E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 69 | 68 | exbidv | |- ( ph -> ( E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) <-> E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 70 | 69 | iotabidv | |- ( ph -> ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) = ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) ) |
| 71 | 37 | seqeq2d | |- ( ph -> seq 1 ( .+ , ( F o. f ) ) = seq 1 ( ( +g ` H ) , ( F o. f ) ) ) |
| 72 | 71 | fveq1d | |- ( ph -> ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) |
| 73 | 72 | eqeq2d | |- ( ph -> ( z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) <-> z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) |
| 74 | 73 | anbi2d | |- ( ph -> ( ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) <-> ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) |
| 75 | 74 | exbidv | |- ( ph -> ( E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) <-> E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) |
| 76 | 75 | iotabidv | |- ( ph -> ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) = ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) |
| 77 | 70 76 | ifeq12d | |- ( ph -> if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) = if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) |
| 78 | 62 63 77 | ifbieq12d | |- ( ph -> if ( ran F C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } , ( 0g ` G ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) = if ( ran F C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } , ( 0g ` H ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) ) |
| 79 | 26 | difeq2d | |- ( ph -> ( _V \ { .0. } ) = ( _V \ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) ) |
| 80 | 79 | imaeq2d | |- ( ph -> ( `' F " ( _V \ { .0. } ) ) = ( `' F " ( _V \ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } ) ) ) |
| 81 | 7 6 | fssd | |- ( ph -> F : A --> B ) |
| 82 | 1 17 2 18 80 4 5 81 | gsumval | |- ( ph -> ( G gsum F ) = if ( ran F C_ { y e. B | A. x e. B ( ( y .+ x ) = x /\ ( x .+ y ) = x ) } , ( 0g ` G ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( .+ , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) ) |
| 83 | 60 | difeq2d | |- ( ph -> ( _V \ { .0. } ) = ( _V \ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) ) |
| 84 | 83 | imaeq2d | |- ( ph -> ( `' F " ( _V \ { .0. } ) ) = ( `' F " ( _V \ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } ) ) ) |
| 85 | 33 | feq3d | |- ( ph -> ( F : A --> S <-> F : A --> ( Base ` H ) ) ) |
| 86 | 7 85 | mpbid | |- ( ph -> F : A --> ( Base ` H ) ) |
| 87 | 49 50 51 52 84 48 5 86 | gsumval | |- ( ph -> ( H gsum F ) = if ( ran F C_ { y e. ( Base ` H ) | A. x e. ( Base ` H ) ( ( y ( +g ` H ) x ) = x /\ ( x ( +g ` H ) y ) = x ) } , ( 0g ` H ) , if ( A e. ran ... , ( iota z E. m E. n e. ( ZZ>= ` m ) ( A = ( m ... n ) /\ z = ( seq m ( ( +g ` H ) , F ) ` n ) ) ) , ( iota z E. f ( f : ( 1 ... ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) -1-1-onto-> ( `' F " ( _V \ { .0. } ) ) /\ z = ( seq 1 ( ( +g ` H ) , ( F o. f ) ) ` ( # ` ( `' F " ( _V \ { .0. } ) ) ) ) ) ) ) ) ) |
| 88 | 78 82 87 | 3eqtr4d | |- ( ph -> ( G gsum F ) = ( H gsum F ) ) |