This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( M ... ( N + 1 ) ) is the disjoint union of ( M ... N ) with { ( N + 1 ) } . (Contributed by Mario Carneiro, 7-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzp1disj | |- ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle2 | |- ( ( N + 1 ) e. ( M ... N ) -> ( N + 1 ) <_ N ) |
|
| 2 | elfzel2 | |- ( ( N + 1 ) e. ( M ... N ) -> N e. ZZ ) |
|
| 3 | 2 | zred | |- ( ( N + 1 ) e. ( M ... N ) -> N e. RR ) |
| 4 | ltp1 | |- ( N e. RR -> N < ( N + 1 ) ) |
|
| 5 | peano2re | |- ( N e. RR -> ( N + 1 ) e. RR ) |
|
| 6 | ltnle | |- ( ( N e. RR /\ ( N + 1 ) e. RR ) -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
|
| 7 | 5 6 | mpdan | |- ( N e. RR -> ( N < ( N + 1 ) <-> -. ( N + 1 ) <_ N ) ) |
| 8 | 4 7 | mpbid | |- ( N e. RR -> -. ( N + 1 ) <_ N ) |
| 9 | 3 8 | syl | |- ( ( N + 1 ) e. ( M ... N ) -> -. ( N + 1 ) <_ N ) |
| 10 | 1 9 | pm2.65i | |- -. ( N + 1 ) e. ( M ... N ) |
| 11 | disjsn | |- ( ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) <-> -. ( N + 1 ) e. ( M ... N ) ) |
|
| 12 | 10 11 | mpbir | |- ( ( M ... N ) i^i { ( N + 1 ) } ) = (/) |