This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elmapg | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^m B ) <-> C : B --> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapvalg | |- ( ( A e. V /\ B e. W ) -> ( A ^m B ) = { g | g : B --> A } ) |
|
| 2 | 1 | eleq2d | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^m B ) <-> C e. { g | g : B --> A } ) ) |
| 3 | fex2 | |- ( ( C : B --> A /\ B e. W /\ A e. V ) -> C e. _V ) |
|
| 4 | 3 | 3com13 | |- ( ( A e. V /\ B e. W /\ C : B --> A ) -> C e. _V ) |
| 5 | 4 | 3expia | |- ( ( A e. V /\ B e. W ) -> ( C : B --> A -> C e. _V ) ) |
| 6 | feq1 | |- ( g = C -> ( g : B --> A <-> C : B --> A ) ) |
|
| 7 | 6 | elab3g | |- ( ( C : B --> A -> C e. _V ) -> ( C e. { g | g : B --> A } <-> C : B --> A ) ) |
| 8 | 5 7 | syl | |- ( ( A e. V /\ B e. W ) -> ( C e. { g | g : B --> A } <-> C : B --> A ) ) |
| 9 | 2 8 | bitrd | |- ( ( A e. V /\ B e. W ) -> ( C e. ( A ^m B ) <-> C : B --> A ) ) |