This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eftl.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| eftl.2 | |- G = ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) |
||
| eftl.3 | |- H = ( n e. NN0 |-> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ n ) ) ) |
||
| eftl.4 | |- ( ph -> M e. NN ) |
||
| eftl.5 | |- ( ph -> A e. CC ) |
||
| eftl.6 | |- ( ph -> ( abs ` A ) <_ 1 ) |
||
| Assertion | eftlub | |- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) <_ ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftl.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | eftl.2 | |- G = ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) |
|
| 3 | eftl.3 | |- H = ( n e. NN0 |-> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ n ) ) ) |
|
| 4 | eftl.4 | |- ( ph -> M e. NN ) |
|
| 5 | eftl.5 | |- ( ph -> A e. CC ) |
|
| 6 | eftl.6 | |- ( ph -> ( abs ` A ) <_ 1 ) |
|
| 7 | 4 | nnnn0d | |- ( ph -> M e. NN0 ) |
| 8 | 1 | eftlcl | |- ( ( A e. CC /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |
| 9 | 5 7 8 | syl2anc | |- ( ph -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |
| 10 | 9 | abscld | |- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) e. RR ) |
| 11 | 5 | abscld | |- ( ph -> ( abs ` A ) e. RR ) |
| 12 | 2 | reeftlcl | |- ( ( ( abs ` A ) e. RR /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. RR ) |
| 13 | 11 7 12 | syl2anc | |- ( ph -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. RR ) |
| 14 | 11 7 | reexpcld | |- ( ph -> ( ( abs ` A ) ^ M ) e. RR ) |
| 15 | peano2nn0 | |- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
|
| 16 | 7 15 | syl | |- ( ph -> ( M + 1 ) e. NN0 ) |
| 17 | 16 | nn0red | |- ( ph -> ( M + 1 ) e. RR ) |
| 18 | 7 | faccld | |- ( ph -> ( ! ` M ) e. NN ) |
| 19 | 18 4 | nnmulcld | |- ( ph -> ( ( ! ` M ) x. M ) e. NN ) |
| 20 | 17 19 | nndivred | |- ( ph -> ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) e. RR ) |
| 21 | 14 20 | remulcld | |- ( ph -> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) e. RR ) |
| 22 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 23 | 4 | nnzd | |- ( ph -> M e. ZZ ) |
| 24 | eqidd | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 25 | eluznn0 | |- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
|
| 26 | 7 25 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 27 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 28 | 27 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 29 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 30 | 5 29 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 31 | 28 30 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 32 | 26 31 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 33 | 1 | eftlcvg | |- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
| 34 | 5 7 33 | syl2anc | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 35 | 22 23 24 32 34 | isumclim2 | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) |
| 36 | eqidd | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) = ( G ` k ) ) |
|
| 37 | 2 | eftval | |- ( k e. NN0 -> ( G ` k ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 38 | 37 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 39 | reeftcl | |- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
|
| 40 | 11 39 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) e. RR ) |
| 41 | 38 40 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) e. RR ) |
| 42 | 26 41 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) e. RR ) |
| 43 | 42 | recnd | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) e. CC ) |
| 44 | 11 | recnd | |- ( ph -> ( abs ` A ) e. CC ) |
| 45 | 2 | eftlcvg | |- ( ( ( abs ` A ) e. CC /\ M e. NN0 ) -> seq M ( + , G ) e. dom ~~> ) |
| 46 | 44 7 45 | syl2anc | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
| 47 | 22 23 36 43 46 | isumclim2 | |- ( ph -> seq M ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 48 | eftabs | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
|
| 49 | 5 48 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) = ( ( ( abs ` A ) ^ k ) / ( ! ` k ) ) ) |
| 50 | 28 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( F ` k ) ) = ( abs ` ( ( A ^ k ) / ( ! ` k ) ) ) ) |
| 51 | 49 50 38 | 3eqtr4rd | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
| 52 | 26 51 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
| 53 | 22 35 47 23 32 52 | iserabs | |- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) <_ sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 54 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 55 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 56 | 4 | nncnd | |- ( ph -> M e. CC ) |
| 57 | nn0cn | |- ( j e. NN0 -> j e. CC ) |
|
| 58 | nn0ex | |- NN0 e. _V |
|
| 59 | 58 | mptex | |- ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) e. _V |
| 60 | 2 59 | eqeltri | |- G e. _V |
| 61 | 60 | shftval4 | |- ( ( M e. CC /\ j e. CC ) -> ( ( G shift -u M ) ` j ) = ( G ` ( M + j ) ) ) |
| 62 | 56 57 61 | syl2an | |- ( ( ph /\ j e. NN0 ) -> ( ( G shift -u M ) ` j ) = ( G ` ( M + j ) ) ) |
| 63 | nn0addcl | |- ( ( M e. NN0 /\ j e. NN0 ) -> ( M + j ) e. NN0 ) |
|
| 64 | 7 63 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( M + j ) e. NN0 ) |
| 65 | 2 | eftval | |- ( ( M + j ) e. NN0 -> ( G ` ( M + j ) ) = ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) ) |
| 66 | 64 65 | syl | |- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) = ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) ) |
| 67 | 11 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) e. RR ) |
| 68 | reeftcl | |- ( ( ( abs ` A ) e. RR /\ ( M + j ) e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) e. RR ) |
|
| 69 | 67 64 68 | syl2anc | |- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) e. RR ) |
| 70 | 66 69 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) e. RR ) |
| 71 | oveq2 | |- ( n = j -> ( ( 1 / ( M + 1 ) ) ^ n ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
|
| 72 | 71 | oveq2d | |- ( n = j -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ n ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 73 | ovex | |- ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. _V |
|
| 74 | 72 3 73 | fvmpt | |- ( j e. NN0 -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 75 | 74 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 76 | 14 18 | nndivred | |- ( ph -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. RR ) |
| 77 | 76 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. RR ) |
| 78 | 4 | peano2nnd | |- ( ph -> ( M + 1 ) e. NN ) |
| 79 | 78 | nnrecred | |- ( ph -> ( 1 / ( M + 1 ) ) e. RR ) |
| 80 | reexpcl | |- ( ( ( 1 / ( M + 1 ) ) e. RR /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. RR ) |
|
| 81 | 79 80 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. RR ) |
| 82 | 77 81 | remulcld | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. RR ) |
| 83 | 67 64 | reexpcld | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) e. RR ) |
| 84 | 14 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) e. RR ) |
| 85 | 64 | faccld | |- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. NN ) |
| 86 | 85 | nnred | |- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. RR ) |
| 87 | 86 82 | remulcld | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) e. RR ) |
| 88 | 7 | adantr | |- ( ( ph /\ j e. NN0 ) -> M e. NN0 ) |
| 89 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 90 | 23 89 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 91 | uzaddcl | |- ( ( M e. ( ZZ>= ` M ) /\ j e. NN0 ) -> ( M + j ) e. ( ZZ>= ` M ) ) |
|
| 92 | 90 91 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( M + j ) e. ( ZZ>= ` M ) ) |
| 93 | 5 | absge0d | |- ( ph -> 0 <_ ( abs ` A ) ) |
| 94 | 93 | adantr | |- ( ( ph /\ j e. NN0 ) -> 0 <_ ( abs ` A ) ) |
| 95 | 6 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( abs ` A ) <_ 1 ) |
| 96 | 67 88 92 94 95 | leexp2rd | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( abs ` A ) ^ M ) ) |
| 97 | 18 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) e. NN ) |
| 98 | nnexpcl | |- ( ( ( M + 1 ) e. NN /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. NN ) |
|
| 99 | 78 98 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. NN ) |
| 100 | 97 99 | nnmulcld | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. NN ) |
| 101 | 100 | nnred | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR ) |
| 102 | 11 7 93 | expge0d | |- ( ph -> 0 <_ ( ( abs ` A ) ^ M ) ) |
| 103 | 14 102 | jca | |- ( ph -> ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) |
| 104 | 103 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) |
| 105 | faclbnd6 | |- ( ( M e. NN0 /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) |
|
| 106 | 7 105 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) |
| 107 | lemul1a | |- ( ( ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR /\ ( ! ` ( M + j ) ) e. RR /\ ( ( ( abs ` A ) ^ M ) e. RR /\ 0 <_ ( ( abs ` A ) ^ M ) ) ) /\ ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) <_ ( ! ` ( M + j ) ) ) -> ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) ) |
|
| 108 | 101 86 104 106 107 | syl31anc | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) ) |
| 109 | 86 84 | remulcld | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) e. RR ) |
| 110 | 100 | nnrpd | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. RR+ ) |
| 111 | 84 109 110 | lemuldiv2d | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) x. ( ( abs ` A ) ^ M ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) <-> ( ( abs ` A ) ^ M ) <_ ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) ) |
| 112 | 108 111 | mpbid | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) <_ ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) |
| 113 | 85 | nncnd | |- ( ( ph /\ j e. NN0 ) -> ( ! ` ( M + j ) ) e. CC ) |
| 114 | 14 | recnd | |- ( ph -> ( ( abs ` A ) ^ M ) e. CC ) |
| 115 | 114 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) e. CC ) |
| 116 | 100 | nncnd | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) e. CC ) |
| 117 | 100 | nnne0d | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) =/= 0 ) |
| 118 | 113 115 116 117 | divassd | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) ) |
| 119 | 78 | nncnd | |- ( ph -> ( M + 1 ) e. CC ) |
| 120 | 119 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) e. CC ) |
| 121 | 78 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) e. NN ) |
| 122 | 121 | nnne0d | |- ( ( ph /\ j e. NN0 ) -> ( M + 1 ) =/= 0 ) |
| 123 | nn0z | |- ( j e. NN0 -> j e. ZZ ) |
|
| 124 | 123 | adantl | |- ( ( ph /\ j e. NN0 ) -> j e. ZZ ) |
| 125 | 120 122 124 | exprecd | |- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) = ( 1 / ( ( M + 1 ) ^ j ) ) ) |
| 126 | 125 | oveq2d | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( 1 / ( ( M + 1 ) ^ j ) ) ) ) |
| 127 | 76 | recnd | |- ( ph -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. CC ) |
| 128 | 127 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) e. CC ) |
| 129 | 99 | nncnd | |- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) e. CC ) |
| 130 | 99 | nnne0d | |- ( ( ph /\ j e. NN0 ) -> ( ( M + 1 ) ^ j ) =/= 0 ) |
| 131 | 128 129 130 | divrecd | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) / ( ( M + 1 ) ^ j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( 1 / ( ( M + 1 ) ^ j ) ) ) ) |
| 132 | 18 | nncnd | |- ( ph -> ( ! ` M ) e. CC ) |
| 133 | 132 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) e. CC ) |
| 134 | facne0 | |- ( M e. NN0 -> ( ! ` M ) =/= 0 ) |
|
| 135 | 7 134 | syl | |- ( ph -> ( ! ` M ) =/= 0 ) |
| 136 | 135 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( ! ` M ) =/= 0 ) |
| 137 | 115 133 129 136 130 | divdiv1d | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) / ( ( M + 1 ) ^ j ) ) = ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) |
| 138 | 126 131 137 | 3eqtr2rd | |- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 139 | 138 | oveq2d | |- ( ( ph /\ j e. NN0 ) -> ( ( ! ` ( M + j ) ) x. ( ( ( abs ` A ) ^ M ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 140 | 118 139 | eqtrd | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ! ` ( M + j ) ) x. ( ( abs ` A ) ^ M ) ) / ( ( ! ` M ) x. ( ( M + 1 ) ^ j ) ) ) = ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 141 | 112 140 | breqtrd | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ M ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 142 | 83 84 87 96 141 | letrd | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) |
| 143 | 85 | nngt0d | |- ( ( ph /\ j e. NN0 ) -> 0 < ( ! ` ( M + j ) ) ) |
| 144 | ledivmul | |- ( ( ( ( abs ` A ) ^ ( M + j ) ) e. RR /\ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. RR /\ ( ( ! ` ( M + j ) ) e. RR /\ 0 < ( ! ` ( M + j ) ) ) ) -> ( ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) <-> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) ) |
|
| 145 | 83 82 86 143 144 | syl112anc | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) <-> ( ( abs ` A ) ^ ( M + j ) ) <_ ( ( ! ` ( M + j ) ) x. ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) ) ) |
| 146 | 142 145 | mpbird | |- ( ( ph /\ j e. NN0 ) -> ( ( ( abs ` A ) ^ ( M + j ) ) / ( ! ` ( M + j ) ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 147 | 66 146 | eqbrtrd | |- ( ( ph /\ j e. NN0 ) -> ( G ` ( M + j ) ) <_ ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 148 | 0z | |- 0 e. ZZ |
|
| 149 | 23 | znegcld | |- ( ph -> -u M e. ZZ ) |
| 150 | 60 | seqshft | |- ( ( 0 e. ZZ /\ -u M e. ZZ ) -> seq 0 ( + , ( G shift -u M ) ) = ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ) |
| 151 | 148 149 150 | sylancr | |- ( ph -> seq 0 ( + , ( G shift -u M ) ) = ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ) |
| 152 | 0cn | |- 0 e. CC |
|
| 153 | subneg | |- ( ( 0 e. CC /\ M e. CC ) -> ( 0 - -u M ) = ( 0 + M ) ) |
|
| 154 | 152 153 | mpan | |- ( M e. CC -> ( 0 - -u M ) = ( 0 + M ) ) |
| 155 | addlid | |- ( M e. CC -> ( 0 + M ) = M ) |
|
| 156 | 154 155 | eqtrd | |- ( M e. CC -> ( 0 - -u M ) = M ) |
| 157 | 56 156 | syl | |- ( ph -> ( 0 - -u M ) = M ) |
| 158 | 157 | seqeq1d | |- ( ph -> seq ( 0 - -u M ) ( + , G ) = seq M ( + , G ) ) |
| 159 | 158 47 | eqbrtrd | |- ( ph -> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 160 | seqex | |- seq ( 0 - -u M ) ( + , G ) e. _V |
|
| 161 | climshft | |- ( ( -u M e. ZZ /\ seq ( 0 - -u M ) ( + , G ) e. _V ) -> ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <-> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) ) |
|
| 162 | 149 160 161 | sylancl | |- ( ph -> ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <-> seq ( 0 - -u M ) ( + , G ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) ) |
| 163 | 159 162 | mpbird | |- ( ph -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 164 | ovex | |- ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. _V |
|
| 165 | sumex | |- sum_ k e. ( ZZ>= ` M ) ( G ` k ) e. _V |
|
| 166 | 164 165 | breldm | |- ( ( seq ( 0 - -u M ) ( + , G ) shift -u M ) ~~> sum_ k e. ( ZZ>= ` M ) ( G ` k ) -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. dom ~~> ) |
| 167 | 163 166 | syl | |- ( ph -> ( seq ( 0 - -u M ) ( + , G ) shift -u M ) e. dom ~~> ) |
| 168 | 151 167 | eqeltrd | |- ( ph -> seq 0 ( + , ( G shift -u M ) ) e. dom ~~> ) |
| 169 | 4 | nnge1d | |- ( ph -> 1 <_ M ) |
| 170 | 1nn | |- 1 e. NN |
|
| 171 | nnleltp1 | |- ( ( 1 e. NN /\ M e. NN ) -> ( 1 <_ M <-> 1 < ( M + 1 ) ) ) |
|
| 172 | 170 4 171 | sylancr | |- ( ph -> ( 1 <_ M <-> 1 < ( M + 1 ) ) ) |
| 173 | 169 172 | mpbid | |- ( ph -> 1 < ( M + 1 ) ) |
| 174 | 16 | nn0ge0d | |- ( ph -> 0 <_ ( M + 1 ) ) |
| 175 | 17 174 | absidd | |- ( ph -> ( abs ` ( M + 1 ) ) = ( M + 1 ) ) |
| 176 | 173 175 | breqtrrd | |- ( ph -> 1 < ( abs ` ( M + 1 ) ) ) |
| 177 | eqid | |- ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) |
|
| 178 | ovex | |- ( ( 1 / ( M + 1 ) ) ^ j ) e. _V |
|
| 179 | 71 177 178 | fvmpt | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
| 180 | 179 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) = ( ( 1 / ( M + 1 ) ) ^ j ) ) |
| 181 | 119 176 180 | georeclim | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ) ~~> ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) |
| 182 | 81 | recnd | |- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( M + 1 ) ) ^ j ) e. CC ) |
| 183 | 180 182 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) e. CC ) |
| 184 | 180 | oveq2d | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 185 | 75 184 | eqtr4d | |- ( ( ph /\ j e. NN0 ) -> ( H ` j ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( n e. NN0 |-> ( ( 1 / ( M + 1 ) ) ^ n ) ) ` j ) ) ) |
| 186 | 54 55 127 181 183 185 | isermulc2 | |- ( ph -> seq 0 ( + , H ) ~~> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) ) |
| 187 | ax-1cn | |- 1 e. CC |
|
| 188 | pncan | |- ( ( M e. CC /\ 1 e. CC ) -> ( ( M + 1 ) - 1 ) = M ) |
|
| 189 | 56 187 188 | sylancl | |- ( ph -> ( ( M + 1 ) - 1 ) = M ) |
| 190 | 189 | oveq2d | |- ( ph -> ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) = ( ( M + 1 ) / M ) ) |
| 191 | 190 | oveq2d | |- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / M ) ) ) |
| 192 | 17 4 | nndivred | |- ( ph -> ( ( M + 1 ) / M ) e. RR ) |
| 193 | 192 | recnd | |- ( ph -> ( ( M + 1 ) / M ) e. CC ) |
| 194 | 114 193 132 135 | div23d | |- ( ph -> ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) = ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / M ) ) ) |
| 195 | 191 194 | eqtr4d | |- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) ) |
| 196 | 114 193 132 135 | divassd | |- ( ph -> ( ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / M ) ) / ( ! ` M ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( ( M + 1 ) / M ) / ( ! ` M ) ) ) ) |
| 197 | 4 | nnne0d | |- ( ph -> M =/= 0 ) |
| 198 | 119 56 132 197 135 | divdiv1d | |- ( ph -> ( ( ( M + 1 ) / M ) / ( ! ` M ) ) = ( ( M + 1 ) / ( M x. ( ! ` M ) ) ) ) |
| 199 | 56 132 | mulcomd | |- ( ph -> ( M x. ( ! ` M ) ) = ( ( ! ` M ) x. M ) ) |
| 200 | 199 | oveq2d | |- ( ph -> ( ( M + 1 ) / ( M x. ( ! ` M ) ) ) = ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) |
| 201 | 198 200 | eqtrd | |- ( ph -> ( ( ( M + 1 ) / M ) / ( ! ` M ) ) = ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) |
| 202 | 201 | oveq2d | |- ( ph -> ( ( ( abs ` A ) ^ M ) x. ( ( ( M + 1 ) / M ) / ( ! ` M ) ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 203 | 195 196 202 | 3eqtrd | |- ( ph -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( M + 1 ) / ( ( M + 1 ) - 1 ) ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 204 | 186 203 | breqtrd | |- ( ph -> seq 0 ( + , H ) ~~> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 205 | seqex | |- seq 0 ( + , H ) e. _V |
|
| 206 | ovex | |- ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) e. _V |
|
| 207 | 205 206 | breldm | |- ( seq 0 ( + , H ) ~~> ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) -> seq 0 ( + , H ) e. dom ~~> ) |
| 208 | 204 207 | syl | |- ( ph -> seq 0 ( + , H ) e. dom ~~> ) |
| 209 | 54 55 62 70 75 82 147 168 208 | isumle | |- ( ph -> sum_ j e. NN0 ( G ` ( M + j ) ) <_ sum_ j e. NN0 ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) ) |
| 210 | eqid | |- ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` ( 0 + M ) ) |
|
| 211 | fveq2 | |- ( k = ( M + j ) -> ( G ` k ) = ( G ` ( M + j ) ) ) |
|
| 212 | 56 | addlidd | |- ( ph -> ( 0 + M ) = M ) |
| 213 | 212 | fveq2d | |- ( ph -> ( ZZ>= ` ( 0 + M ) ) = ( ZZ>= ` M ) ) |
| 214 | 213 | eleq2d | |- ( ph -> ( k e. ( ZZ>= ` ( 0 + M ) ) <-> k e. ( ZZ>= ` M ) ) ) |
| 215 | 214 | biimpa | |- ( ( ph /\ k e. ( ZZ>= ` ( 0 + M ) ) ) -> k e. ( ZZ>= ` M ) ) |
| 216 | 215 43 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` ( 0 + M ) ) ) -> ( G ` k ) e. CC ) |
| 217 | 54 210 211 23 55 216 | isumshft | |- ( ph -> sum_ k e. ( ZZ>= ` ( 0 + M ) ) ( G ` k ) = sum_ j e. NN0 ( G ` ( M + j ) ) ) |
| 218 | 213 | sumeq1d | |- ( ph -> sum_ k e. ( ZZ>= ` ( 0 + M ) ) ( G ` k ) = sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 219 | 217 218 | eqtr3d | |- ( ph -> sum_ j e. NN0 ( G ` ( M + j ) ) = sum_ k e. ( ZZ>= ` M ) ( G ` k ) ) |
| 220 | 82 | recnd | |- ( ( ph /\ j e. NN0 ) -> ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) e. CC ) |
| 221 | 54 55 75 220 204 | isumclim | |- ( ph -> sum_ j e. NN0 ( ( ( ( abs ` A ) ^ M ) / ( ! ` M ) ) x. ( ( 1 / ( M + 1 ) ) ^ j ) ) = ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 222 | 209 219 221 | 3brtr3d | |- ( ph -> sum_ k e. ( ZZ>= ` M ) ( G ` k ) <_ ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |
| 223 | 10 13 21 53 222 | letrd | |- ( ph -> ( abs ` sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) <_ ( ( ( abs ` A ) ^ M ) x. ( ( M + 1 ) / ( ( ! ` M ) x. M ) ) ) ) |