This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between subtraction and negative. (Contributed by NM, 10-May-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subneg | |- ( ( A e. CC /\ B e. CC ) -> ( A - -u B ) = ( A + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg | |- -u B = ( 0 - B ) |
|
| 2 | 1 | oveq2i | |- ( A - -u B ) = ( A - ( 0 - B ) ) |
| 3 | 0cn | |- 0 e. CC |
|
| 4 | subsub | |- ( ( A e. CC /\ 0 e. CC /\ B e. CC ) -> ( A - ( 0 - B ) ) = ( ( A - 0 ) + B ) ) |
|
| 5 | 3 4 | mp3an2 | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( 0 - B ) ) = ( ( A - 0 ) + B ) ) |
| 6 | 2 5 | eqtrid | |- ( ( A e. CC /\ B e. CC ) -> ( A - -u B ) = ( ( A - 0 ) + B ) ) |
| 7 | subid1 | |- ( A e. CC -> ( A - 0 ) = A ) |
|
| 8 | 7 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( A - 0 ) = A ) |
| 9 | 8 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - 0 ) + B ) = ( A + B ) ) |
| 10 | 6 9 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( A - -u B ) = ( A + B ) ) |