This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftl.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | eftlcl | |- ( ( A e. CC /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftl.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 3 | nn0z | |- ( M e. NN0 -> M e. ZZ ) |
|
| 4 | 3 | adantl | |- ( ( A e. CC /\ M e. NN0 ) -> M e. ZZ ) |
| 5 | eqidd | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 6 | eluznn0 | |- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
|
| 7 | 6 | adantll | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 8 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 9 | 7 8 | syl | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 10 | simpll | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> A e. CC ) |
|
| 11 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 12 | 10 7 11 | syl2anc | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 13 | 9 12 | eqeltrd | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 14 | 1 | eftlcvg | |- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
| 15 | 2 4 5 13 14 | isumcl | |- ( ( A e. CC /\ M e. NN0 ) -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) e. CC ) |