This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eftl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| eftl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | ||
| eftl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ) | ||
| eftl.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| eftl.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| eftl.6 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 1 ) | ||
| Assertion | eftlub | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftl.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | eftl.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 3 | eftl.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ) | |
| 4 | eftl.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 5 | eftl.5 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 6 | eftl.6 | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ≤ 1 ) | |
| 7 | 4 | nnnn0d | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 8 | 1 | eftlcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 9 | 5 7 8 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 10 | 9 | abscld | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 11 | 5 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 12 | 2 | reeftlcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑀 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 13 | 11 7 12 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 14 | 11 7 | reexpcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ) |
| 15 | peano2nn0 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ0 ) | |
| 16 | 7 15 | syl | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ0 ) |
| 17 | 16 | nn0red | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
| 18 | 7 | faccld | ⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ∈ ℕ ) |
| 19 | 18 4 | nnmulcld | ⊢ ( 𝜑 → ( ( ! ‘ 𝑀 ) · 𝑀 ) ∈ ℕ ) |
| 20 | 17 19 | nndivred | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ∈ ℝ ) |
| 21 | 14 20 | remulcld | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ∈ ℝ ) |
| 22 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 23 | 4 | nnzd | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 24 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 25 | eluznn0 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) | |
| 26 | 7 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
| 27 | 1 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 29 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 30 | 5 29 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 31 | 28 30 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 32 | 26 31 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 33 | 1 | eftlcvg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 34 | 5 7 33 | syl2anc | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 35 | 22 23 24 32 34 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) |
| 36 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 37 | 2 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 39 | reeftcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) | |
| 40 | 11 39 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
| 41 | 38 40 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 42 | 26 41 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 43 | 42 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 44 | 11 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 45 | 2 | eftlcvg | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 46 | 44 7 45 | syl2anc | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 47 | 22 23 36 43 46 | isumclim2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
| 48 | eftabs | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) | |
| 49 | 5 48 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 50 | 28 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 51 | 49 50 38 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 52 | 26 51 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑘 ) = ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 53 | 22 35 47 23 32 52 | iserabs | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
| 54 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 55 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 56 | 4 | nncnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 57 | nn0cn | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) | |
| 58 | nn0ex | ⊢ ℕ0 ∈ V | |
| 59 | 58 | mptex | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ∈ V |
| 60 | 2 59 | eqeltri | ⊢ 𝐺 ∈ V |
| 61 | 60 | shftval4 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑗 ∈ ℂ ) → ( ( 𝐺 shift - 𝑀 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) |
| 62 | 56 57 61 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐺 shift - 𝑀 ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) |
| 63 | nn0addcl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ℕ0 ) | |
| 64 | 7 63 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ℕ0 ) |
| 65 | 2 | eftval | ⊢ ( ( 𝑀 + 𝑗 ) ∈ ℕ0 → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ) |
| 66 | 64 65 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ) |
| 67 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 68 | reeftcl | ⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑀 + 𝑗 ) ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ∈ ℝ ) | |
| 69 | 67 64 68 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ∈ ℝ ) |
| 70 | 66 69 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ) |
| 71 | oveq2 | ⊢ ( 𝑛 = 𝑗 → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) = ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) | |
| 72 | 71 | oveq2d | ⊢ ( 𝑛 = 𝑗 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 73 | ovex | ⊢ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ V | |
| 74 | 72 3 73 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝐻 ‘ 𝑗 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 75 | 74 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 76 | 14 18 | nndivred | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℝ ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℝ ) |
| 78 | 4 | peano2nnd | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
| 79 | 78 | nnrecred | ⊢ ( 𝜑 → ( 1 / ( 𝑀 + 1 ) ) ∈ ℝ ) |
| 80 | reexpcl | ⊢ ( ( ( 1 / ( 𝑀 + 1 ) ) ∈ ℝ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ ℝ ) | |
| 81 | 79 80 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ ℝ ) |
| 82 | 77 81 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ ℝ ) |
| 83 | 67 64 | reexpcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ∈ ℝ ) |
| 84 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ) |
| 85 | 64 | faccld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℕ ) |
| 86 | 85 | nnred | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ) |
| 87 | 86 82 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ∈ ℝ ) |
| 88 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
| 89 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 90 | 23 89 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 91 | uzaddcl | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 92 | 90 91 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 93 | 5 | absge0d | ⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 94 | 93 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 95 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ≤ 1 ) |
| 96 | 67 88 92 94 95 | leexp2rd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) |
| 97 | 18 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ∈ ℕ ) |
| 98 | nnexpcl | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ∈ ℕ ) | |
| 99 | 78 98 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ∈ ℕ ) |
| 100 | 97 99 | nnmulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℕ ) |
| 101 | 100 | nnred | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℝ ) |
| 102 | 11 7 93 | expge0d | ⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) |
| 103 | 14 102 | jca | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) |
| 104 | 103 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) |
| 105 | faclbnd6 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≤ ( ! ‘ ( 𝑀 + 𝑗 ) ) ) | |
| 106 | 7 105 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≤ ( ! ‘ ( 𝑀 + 𝑗 ) ) ) |
| 107 | lemul1a | ⊢ ( ( ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℝ ∧ ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ∧ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) ∧ ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≤ ( ! ‘ ( 𝑀 + 𝑗 ) ) ) → ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) | |
| 108 | 101 86 104 106 107 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ) |
| 109 | 86 84 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ∈ ℝ ) |
| 110 | 100 | nnrpd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℝ+ ) |
| 111 | 84 109 110 | lemuldiv2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) ↔ ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ≤ ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) ) |
| 112 | 108 111 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ≤ ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
| 113 | 85 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℂ ) |
| 114 | 14 | recnd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℂ ) |
| 115 | 114 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ∈ ℂ ) |
| 116 | 100 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ∈ ℂ ) |
| 117 | 100 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ≠ 0 ) |
| 118 | 113 115 116 117 | divassd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) = ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) ) |
| 119 | 78 | nncnd | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℂ ) |
| 120 | 119 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 1 ) ∈ ℂ ) |
| 121 | 78 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 1 ) ∈ ℕ ) |
| 122 | 121 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 + 1 ) ≠ 0 ) |
| 123 | nn0z | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℤ ) | |
| 124 | 123 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℤ ) |
| 125 | 120 122 124 | exprecd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) = ( 1 / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) |
| 126 | 125 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( 1 / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
| 127 | 76 | recnd | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℂ ) |
| 128 | 127 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) ∈ ℂ ) |
| 129 | 99 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ∈ ℂ ) |
| 130 | 99 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑀 + 1 ) ↑ 𝑗 ) ≠ 0 ) |
| 131 | 128 129 130 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( 1 / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
| 132 | 18 | nncnd | ⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ∈ ℂ ) |
| 133 | 132 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ∈ ℂ ) |
| 134 | facne0 | ⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ≠ 0 ) | |
| 135 | 7 134 | syl | ⊢ ( 𝜑 → ( ! ‘ 𝑀 ) ≠ 0 ) |
| 136 | 135 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ≠ 0 ) |
| 137 | 115 133 129 136 130 | divdiv1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) / ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) |
| 138 | 126 131 137 | 3eqtr2rd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 139 | 138 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) ) = ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
| 140 | 118 139 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ) / ( ( ! ‘ 𝑀 ) · ( ( 𝑀 + 1 ) ↑ 𝑗 ) ) ) = ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
| 141 | 112 140 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
| 142 | 83 84 87 96 141 | letrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) |
| 143 | 85 | nngt0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 0 < ( ! ‘ ( 𝑀 + 𝑗 ) ) ) |
| 144 | ledivmul | ⊢ ( ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ∈ ℝ ∧ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ ℝ ∧ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) ∈ ℝ ∧ 0 < ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ) → ( ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ↔ ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) ) | |
| 145 | 83 82 86 143 144 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ↔ ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) ≤ ( ( ! ‘ ( 𝑀 + 𝑗 ) ) · ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) ) ) |
| 146 | 142 145 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) ↑ ( 𝑀 + 𝑗 ) ) / ( ! ‘ ( 𝑀 + 𝑗 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 147 | 66 146 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 148 | 0z | ⊢ 0 ∈ ℤ | |
| 149 | 23 | znegcld | ⊢ ( 𝜑 → - 𝑀 ∈ ℤ ) |
| 150 | 60 | seqshft | ⊢ ( ( 0 ∈ ℤ ∧ - 𝑀 ∈ ℤ ) → seq 0 ( + , ( 𝐺 shift - 𝑀 ) ) = ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ) |
| 151 | 148 149 150 | sylancr | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 shift - 𝑀 ) ) = ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ) |
| 152 | 0cn | ⊢ 0 ∈ ℂ | |
| 153 | subneg | ⊢ ( ( 0 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 0 − - 𝑀 ) = ( 0 + 𝑀 ) ) | |
| 154 | 152 153 | mpan | ⊢ ( 𝑀 ∈ ℂ → ( 0 − - 𝑀 ) = ( 0 + 𝑀 ) ) |
| 155 | addlid | ⊢ ( 𝑀 ∈ ℂ → ( 0 + 𝑀 ) = 𝑀 ) | |
| 156 | 154 155 | eqtrd | ⊢ ( 𝑀 ∈ ℂ → ( 0 − - 𝑀 ) = 𝑀 ) |
| 157 | 56 156 | syl | ⊢ ( 𝜑 → ( 0 − - 𝑀 ) = 𝑀 ) |
| 158 | 157 | seqeq1d | ⊢ ( 𝜑 → seq ( 0 − - 𝑀 ) ( + , 𝐺 ) = seq 𝑀 ( + , 𝐺 ) ) |
| 159 | 158 47 | eqbrtrd | ⊢ ( 𝜑 → seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
| 160 | seqex | ⊢ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ∈ V | |
| 161 | climshft | ⊢ ( ( - 𝑀 ∈ ℤ ∧ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ∈ V ) → ( ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ↔ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) ) | |
| 162 | 149 160 161 | sylancl | ⊢ ( 𝜑 → ( ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ↔ seq ( 0 − - 𝑀 ) ( + , 𝐺 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) ) |
| 163 | 159 162 | mpbird | ⊢ ( 𝜑 → ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
| 164 | ovex | ⊢ ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ∈ V | |
| 165 | sumex | ⊢ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ∈ V | |
| 166 | 164 165 | breldm | ⊢ ( ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) → ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ∈ dom ⇝ ) |
| 167 | 163 166 | syl | ⊢ ( 𝜑 → ( seq ( 0 − - 𝑀 ) ( + , 𝐺 ) shift - 𝑀 ) ∈ dom ⇝ ) |
| 168 | 151 167 | eqeltrd | ⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 shift - 𝑀 ) ) ∈ dom ⇝ ) |
| 169 | 4 | nnge1d | ⊢ ( 𝜑 → 1 ≤ 𝑀 ) |
| 170 | 1nn | ⊢ 1 ∈ ℕ | |
| 171 | nnleltp1 | ⊢ ( ( 1 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 1 ≤ 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) ) | |
| 172 | 170 4 171 | sylancr | ⊢ ( 𝜑 → ( 1 ≤ 𝑀 ↔ 1 < ( 𝑀 + 1 ) ) ) |
| 173 | 169 172 | mpbid | ⊢ ( 𝜑 → 1 < ( 𝑀 + 1 ) ) |
| 174 | 16 | nn0ge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝑀 + 1 ) ) |
| 175 | 17 174 | absidd | ⊢ ( 𝜑 → ( abs ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) |
| 176 | 173 175 | breqtrrd | ⊢ ( 𝜑 → 1 < ( abs ‘ ( 𝑀 + 1 ) ) ) |
| 177 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) | |
| 178 | ovex | ⊢ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ V | |
| 179 | 71 177 178 | fvmpt | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) |
| 180 | 179 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) = ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) |
| 181 | 119 176 180 | georeclim | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ) ⇝ ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) |
| 182 | 81 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ∈ ℂ ) |
| 183 | 180 182 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
| 184 | 180 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 185 | 75 184 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑗 ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑛 ) ) ‘ 𝑗 ) ) ) |
| 186 | 54 55 127 181 183 185 | isermulc2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) ) |
| 187 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 188 | pncan | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) | |
| 189 | 56 187 188 | sylancl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 190 | 189 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) = ( ( 𝑀 + 1 ) / 𝑀 ) ) |
| 191 | 190 | oveq2d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) ) |
| 192 | 17 4 | nndivred | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / 𝑀 ) ∈ ℝ ) |
| 193 | 192 | recnd | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / 𝑀 ) ∈ ℂ ) |
| 194 | 114 193 132 135 | div23d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) / ( ! ‘ 𝑀 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) ) |
| 195 | 191 194 | eqtr4d | ⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) / ( ! ‘ 𝑀 ) ) ) |
| 196 | 114 193 132 135 | divassd | ⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / 𝑀 ) ) / ( ! ‘ 𝑀 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) ) ) |
| 197 | 4 | nnne0d | ⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 198 | 119 56 132 197 135 | divdiv1d | ⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) = ( ( 𝑀 + 1 ) / ( 𝑀 · ( ! ‘ 𝑀 ) ) ) ) |
| 199 | 56 132 | mulcomd | ⊢ ( 𝜑 → ( 𝑀 · ( ! ‘ 𝑀 ) ) = ( ( ! ‘ 𝑀 ) · 𝑀 ) ) |
| 200 | 199 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) / ( 𝑀 · ( ! ‘ 𝑀 ) ) ) = ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) |
| 201 | 198 200 | eqtrd | ⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) = ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) |
| 202 | 201 | oveq2d | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( ( 𝑀 + 1 ) / 𝑀 ) / ( ! ‘ 𝑀 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
| 203 | 195 196 202 | 3eqtrd | ⊢ ( 𝜑 → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 𝑀 + 1 ) / ( ( 𝑀 + 1 ) − 1 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
| 204 | 186 203 | breqtrd | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
| 205 | seqex | ⊢ seq 0 ( + , 𝐻 ) ∈ V | |
| 206 | ovex | ⊢ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ∈ V | |
| 207 | 205 206 | breldm | ⊢ ( seq 0 ( + , 𝐻 ) ⇝ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
| 208 | 204 207 | syl | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
| 209 | 54 55 62 70 75 82 147 168 208 | isumle | ⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ≤ Σ 𝑗 ∈ ℕ0 ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ) |
| 210 | eqid | ⊢ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) = ( ℤ≥ ‘ ( 0 + 𝑀 ) ) | |
| 211 | fveq2 | ⊢ ( 𝑘 = ( 𝑀 + 𝑗 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) | |
| 212 | 56 | addlidd | ⊢ ( 𝜑 → ( 0 + 𝑀 ) = 𝑀 ) |
| 213 | 212 | fveq2d | ⊢ ( 𝜑 → ( ℤ≥ ‘ ( 0 + 𝑀 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 214 | 213 | eleq2d | ⊢ ( 𝜑 → ( 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ↔ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 215 | 214 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 216 | 215 43 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 217 | 54 210 211 23 55 216 | isumshft | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑗 ∈ ℕ0 ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) ) |
| 218 | 213 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ ( 0 + 𝑀 ) ) ( 𝐺 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
| 219 | 217 218 | eqtr3d | ⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( 𝐺 ‘ ( 𝑀 + 𝑗 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ) |
| 220 | 82 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) ∈ ℂ ) |
| 221 | 54 55 75 220 204 | isumclim | ⊢ ( 𝜑 → Σ 𝑗 ∈ ℕ0 ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) / ( ! ‘ 𝑀 ) ) · ( ( 1 / ( 𝑀 + 1 ) ) ↑ 𝑗 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
| 222 | 209 219 221 | 3brtr3d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐺 ‘ 𝑘 ) ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |
| 223 | 10 13 21 53 222 | letrd | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑀 ) · ( ( 𝑀 + 1 ) / ( ( ! ‘ 𝑀 ) · 𝑀 ) ) ) ) |