This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efsep.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| efsep.2 | |- N = ( M + 1 ) |
||
| efsep.3 | |- M e. NN0 |
||
| efsep.4 | |- ( ph -> A e. CC ) |
||
| efsep.5 | |- ( ph -> B e. CC ) |
||
| efsep.6 | |- ( ph -> ( exp ` A ) = ( B + sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) ) |
||
| efsep.7 | |- ( ph -> ( B + ( ( A ^ M ) / ( ! ` M ) ) ) = D ) |
||
| Assertion | efsep | |- ( ph -> ( exp ` A ) = ( D + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efsep.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | efsep.2 | |- N = ( M + 1 ) |
|
| 3 | efsep.3 | |- M e. NN0 |
|
| 4 | efsep.4 | |- ( ph -> A e. CC ) |
|
| 5 | efsep.5 | |- ( ph -> B e. CC ) |
|
| 6 | efsep.6 | |- ( ph -> ( exp ` A ) = ( B + sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) ) |
|
| 7 | efsep.7 | |- ( ph -> ( B + ( ( A ^ M ) / ( ! ` M ) ) ) = D ) |
|
| 8 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 9 | 3 | nn0zi | |- M e. ZZ |
| 10 | 9 | a1i | |- ( ph -> M e. ZZ ) |
| 11 | eqidd | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( F ` k ) ) |
|
| 12 | eluznn0 | |- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
|
| 13 | 3 12 | mpan | |- ( k e. ( ZZ>= ` M ) -> k e. NN0 ) |
| 14 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 15 | 14 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 16 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 17 | 4 16 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 18 | 15 17 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 19 | 13 18 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) e. CC ) |
| 20 | 1 | eftlcvg | |- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
| 21 | 4 3 20 | sylancl | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 22 | 8 10 11 19 21 | isum1p | |- ( ph -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) = ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( F ` k ) ) ) |
| 23 | 1 | eftval | |- ( M e. NN0 -> ( F ` M ) = ( ( A ^ M ) / ( ! ` M ) ) ) |
| 24 | 3 23 | ax-mp | |- ( F ` M ) = ( ( A ^ M ) / ( ! ` M ) ) |
| 25 | 2 | eqcomi | |- ( M + 1 ) = N |
| 26 | 25 | fveq2i | |- ( ZZ>= ` ( M + 1 ) ) = ( ZZ>= ` N ) |
| 27 | 26 | sumeq1i | |- sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( F ` k ) = sum_ k e. ( ZZ>= ` N ) ( F ` k ) |
| 28 | 24 27 | oveq12i | |- ( ( F ` M ) + sum_ k e. ( ZZ>= ` ( M + 1 ) ) ( F ` k ) ) = ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) |
| 29 | 22 28 | eqtrdi | |- ( ph -> sum_ k e. ( ZZ>= ` M ) ( F ` k ) = ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |
| 30 | 29 | oveq2d | |- ( ph -> ( B + sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) = ( B + ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) ) |
| 31 | eftcl | |- ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) / ( ! ` M ) ) e. CC ) |
|
| 32 | 4 3 31 | sylancl | |- ( ph -> ( ( A ^ M ) / ( ! ` M ) ) e. CC ) |
| 33 | peano2nn0 | |- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
|
| 34 | 3 33 | ax-mp | |- ( M + 1 ) e. NN0 |
| 35 | 2 34 | eqeltri | |- N e. NN0 |
| 36 | 1 | eftlcl | |- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( ZZ>= ` N ) ( F ` k ) e. CC ) |
| 37 | 4 35 36 | sylancl | |- ( ph -> sum_ k e. ( ZZ>= ` N ) ( F ` k ) e. CC ) |
| 38 | 5 32 37 | addassd | |- ( ph -> ( ( B + ( ( A ^ M ) / ( ! ` M ) ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) = ( B + ( ( ( A ^ M ) / ( ! ` M ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) ) |
| 39 | 30 38 | eqtr4d | |- ( ph -> ( B + sum_ k e. ( ZZ>= ` M ) ( F ` k ) ) = ( ( B + ( ( A ^ M ) / ( ! ` M ) ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |
| 40 | 7 | oveq1d | |- ( ph -> ( ( B + ( ( A ^ M ) / ( ! ` M ) ) ) + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) = ( D + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |
| 41 | 6 39 40 | 3eqtrd | |- ( ph -> ( exp ` A ) = ( D + sum_ k e. ( ZZ>= ` N ) ( F ` k ) ) ) |