This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of a term in the series expansion of the exponential function. (Contributed by Paul Chapman, 23-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eftabs | |- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( ( A ^ K ) / ( ! ` K ) ) ) = ( ( ( abs ` A ) ^ K ) / ( ! ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcl | |- ( ( A e. CC /\ K e. NN0 ) -> ( A ^ K ) e. CC ) |
|
| 2 | faccl | |- ( K e. NN0 -> ( ! ` K ) e. NN ) |
|
| 3 | 2 | adantl | |- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. NN ) |
| 4 | 3 | nncnd | |- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. CC ) |
| 5 | facne0 | |- ( K e. NN0 -> ( ! ` K ) =/= 0 ) |
|
| 6 | 5 | adantl | |- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) =/= 0 ) |
| 7 | 1 4 6 | absdivd | |- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( ( A ^ K ) / ( ! ` K ) ) ) = ( ( abs ` ( A ^ K ) ) / ( abs ` ( ! ` K ) ) ) ) |
| 8 | absexp | |- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( A ^ K ) ) = ( ( abs ` A ) ^ K ) ) |
|
| 9 | 3 | nnred | |- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. RR ) |
| 10 | 3 | nnnn0d | |- ( ( A e. CC /\ K e. NN0 ) -> ( ! ` K ) e. NN0 ) |
| 11 | 10 | nn0ge0d | |- ( ( A e. CC /\ K e. NN0 ) -> 0 <_ ( ! ` K ) ) |
| 12 | 9 11 | absidd | |- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( ! ` K ) ) = ( ! ` K ) ) |
| 13 | 8 12 | oveq12d | |- ( ( A e. CC /\ K e. NN0 ) -> ( ( abs ` ( A ^ K ) ) / ( abs ` ( ! ` K ) ) ) = ( ( ( abs ` A ) ^ K ) / ( ! ` K ) ) ) |
| 14 | 7 13 | eqtrd | |- ( ( A e. CC /\ K e. NN0 ) -> ( abs ` ( ( A ^ K ) / ( ! ` K ) ) ) = ( ( ( abs ` A ) ^ K ) / ( ! ` K ) ) ) |