This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemul1a | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) <_ ( B x. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | leloe | |- ( ( 0 e. RR /\ C e. RR ) -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
|
| 3 | 1 2 | mpan | |- ( C e. RR -> ( 0 <_ C <-> ( 0 < C \/ 0 = C ) ) ) |
| 4 | 3 | pm5.32i | |- ( ( C e. RR /\ 0 <_ C ) <-> ( C e. RR /\ ( 0 < C \/ 0 = C ) ) ) |
| 5 | lemul1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A x. C ) <_ ( B x. C ) ) ) |
|
| 6 | 5 | biimpd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) |
| 7 | 6 | 3expia | |- ( ( A e. RR /\ B e. RR ) -> ( ( C e. RR /\ 0 < C ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 8 | 7 | com12 | |- ( ( C e. RR /\ 0 < C ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 9 | 1 | leidi | |- 0 <_ 0 |
| 10 | recn | |- ( A e. RR -> A e. CC ) |
|
| 11 | 10 | mul01d | |- ( A e. RR -> ( A x. 0 ) = 0 ) |
| 12 | recn | |- ( B e. RR -> B e. CC ) |
|
| 13 | 12 | mul01d | |- ( B e. RR -> ( B x. 0 ) = 0 ) |
| 14 | 11 13 | breqan12d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A x. 0 ) <_ ( B x. 0 ) <-> 0 <_ 0 ) ) |
| 15 | 9 14 | mpbiri | |- ( ( A e. RR /\ B e. RR ) -> ( A x. 0 ) <_ ( B x. 0 ) ) |
| 16 | oveq2 | |- ( 0 = C -> ( A x. 0 ) = ( A x. C ) ) |
|
| 17 | oveq2 | |- ( 0 = C -> ( B x. 0 ) = ( B x. C ) ) |
|
| 18 | 16 17 | breq12d | |- ( 0 = C -> ( ( A x. 0 ) <_ ( B x. 0 ) <-> ( A x. C ) <_ ( B x. C ) ) ) |
| 19 | 15 18 | imbitrid | |- ( 0 = C -> ( ( A e. RR /\ B e. RR ) -> ( A x. C ) <_ ( B x. C ) ) ) |
| 20 | 19 | a1dd | |- ( 0 = C -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 21 | 20 | adantl | |- ( ( C e. RR /\ 0 = C ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 22 | 8 21 | jaodan | |- ( ( C e. RR /\ ( 0 < C \/ 0 = C ) ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 23 | 4 22 | sylbi | |- ( ( C e. RR /\ 0 <_ C ) -> ( ( A e. RR /\ B e. RR ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 24 | 23 | com12 | |- ( ( A e. RR /\ B e. RR ) -> ( ( C e. RR /\ 0 <_ C ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) ) |
| 25 | 24 | 3impia | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) -> ( A <_ B -> ( A x. C ) <_ ( B x. C ) ) ) |
| 26 | 25 | imp | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( A x. C ) <_ ( B x. C ) ) |