This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The tail series of the exponential function are convergent. (Contributed by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eftl.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| Assertion | eftlcvg | |- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eftl.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | 1 | efcllem | |- ( A e. CC -> seq 0 ( + , F ) e. dom ~~> ) |
| 3 | 2 | adantr | |- ( ( A e. CC /\ M e. NN0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
| 4 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 5 | simpr | |- ( ( A e. CC /\ M e. NN0 ) -> M e. NN0 ) |
|
| 6 | 1 | eftval | |- ( k e. NN0 -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 7 | 6 | adantl | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 8 | eftcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 9 | 8 | adantlr | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. CC ) |
| 10 | 7 9 | eqeltrd | |- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 11 | 4 5 10 | iserex | |- ( ( A e. CC /\ M e. NN0 ) -> ( seq 0 ( + , F ) e. dom ~~> <-> seq M ( + , F ) e. dom ~~> ) ) |
| 12 | 3 11 | mpbid | |- ( ( A e. CC /\ M e. NN0 ) -> seq M ( + , F ) e. dom ~~> ) |