This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | faclbnd6 | |- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ M ) ) <_ ( ! ` ( N + M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( m = 0 -> ( ( N + 1 ) ^ m ) = ( ( N + 1 ) ^ 0 ) ) |
|
| 2 | 1 | oveq2d | |- ( m = 0 -> ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) = ( ( ! ` N ) x. ( ( N + 1 ) ^ 0 ) ) ) |
| 3 | oveq2 | |- ( m = 0 -> ( N + m ) = ( N + 0 ) ) |
|
| 4 | 3 | fveq2d | |- ( m = 0 -> ( ! ` ( N + m ) ) = ( ! ` ( N + 0 ) ) ) |
| 5 | 2 4 | breq12d | |- ( m = 0 -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) <_ ( ! ` ( N + m ) ) <-> ( ( ! ` N ) x. ( ( N + 1 ) ^ 0 ) ) <_ ( ! ` ( N + 0 ) ) ) ) |
| 6 | oveq2 | |- ( m = k -> ( ( N + 1 ) ^ m ) = ( ( N + 1 ) ^ k ) ) |
|
| 7 | 6 | oveq2d | |- ( m = k -> ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) = ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) ) |
| 8 | oveq2 | |- ( m = k -> ( N + m ) = ( N + k ) ) |
|
| 9 | 8 | fveq2d | |- ( m = k -> ( ! ` ( N + m ) ) = ( ! ` ( N + k ) ) ) |
| 10 | 7 9 | breq12d | |- ( m = k -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) <_ ( ! ` ( N + m ) ) <-> ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) ) ) |
| 11 | oveq2 | |- ( m = ( k + 1 ) -> ( ( N + 1 ) ^ m ) = ( ( N + 1 ) ^ ( k + 1 ) ) ) |
|
| 12 | 11 | oveq2d | |- ( m = ( k + 1 ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) = ( ( ! ` N ) x. ( ( N + 1 ) ^ ( k + 1 ) ) ) ) |
| 13 | oveq2 | |- ( m = ( k + 1 ) -> ( N + m ) = ( N + ( k + 1 ) ) ) |
|
| 14 | 13 | fveq2d | |- ( m = ( k + 1 ) -> ( ! ` ( N + m ) ) = ( ! ` ( N + ( k + 1 ) ) ) ) |
| 15 | 12 14 | breq12d | |- ( m = ( k + 1 ) -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) <_ ( ! ` ( N + m ) ) <-> ( ( ! ` N ) x. ( ( N + 1 ) ^ ( k + 1 ) ) ) <_ ( ! ` ( N + ( k + 1 ) ) ) ) ) |
| 16 | oveq2 | |- ( m = M -> ( ( N + 1 ) ^ m ) = ( ( N + 1 ) ^ M ) ) |
|
| 17 | 16 | oveq2d | |- ( m = M -> ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) = ( ( ! ` N ) x. ( ( N + 1 ) ^ M ) ) ) |
| 18 | oveq2 | |- ( m = M -> ( N + m ) = ( N + M ) ) |
|
| 19 | 18 | fveq2d | |- ( m = M -> ( ! ` ( N + m ) ) = ( ! ` ( N + M ) ) ) |
| 20 | 17 19 | breq12d | |- ( m = M -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ m ) ) <_ ( ! ` ( N + m ) ) <-> ( ( ! ` N ) x. ( ( N + 1 ) ^ M ) ) <_ ( ! ` ( N + M ) ) ) ) |
| 21 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 22 | 21 | nnred | |- ( N e. NN0 -> ( ! ` N ) e. RR ) |
| 23 | 22 | leidd | |- ( N e. NN0 -> ( ! ` N ) <_ ( ! ` N ) ) |
| 24 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 25 | peano2cn | |- ( N e. CC -> ( N + 1 ) e. CC ) |
|
| 26 | 24 25 | syl | |- ( N e. NN0 -> ( N + 1 ) e. CC ) |
| 27 | 26 | exp0d | |- ( N e. NN0 -> ( ( N + 1 ) ^ 0 ) = 1 ) |
| 28 | 27 | oveq2d | |- ( N e. NN0 -> ( ( ! ` N ) x. ( ( N + 1 ) ^ 0 ) ) = ( ( ! ` N ) x. 1 ) ) |
| 29 | 21 | nncnd | |- ( N e. NN0 -> ( ! ` N ) e. CC ) |
| 30 | 29 | mulridd | |- ( N e. NN0 -> ( ( ! ` N ) x. 1 ) = ( ! ` N ) ) |
| 31 | 28 30 | eqtrd | |- ( N e. NN0 -> ( ( ! ` N ) x. ( ( N + 1 ) ^ 0 ) ) = ( ! ` N ) ) |
| 32 | 24 | addridd | |- ( N e. NN0 -> ( N + 0 ) = N ) |
| 33 | 32 | fveq2d | |- ( N e. NN0 -> ( ! ` ( N + 0 ) ) = ( ! ` N ) ) |
| 34 | 23 31 33 | 3brtr4d | |- ( N e. NN0 -> ( ( ! ` N ) x. ( ( N + 1 ) ^ 0 ) ) <_ ( ! ` ( N + 0 ) ) ) |
| 35 | 22 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ! ` N ) e. RR ) |
| 36 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 37 | 36 | nn0red | |- ( N e. NN0 -> ( N + 1 ) e. RR ) |
| 38 | reexpcl | |- ( ( ( N + 1 ) e. RR /\ k e. NN0 ) -> ( ( N + 1 ) ^ k ) e. RR ) |
|
| 39 | 37 38 | sylan | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) ^ k ) e. RR ) |
| 40 | 35 39 | remulcld | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) e. RR ) |
| 41 | nnnn0 | |- ( ( ! ` N ) e. NN -> ( ! ` N ) e. NN0 ) |
|
| 42 | 41 | nn0ge0d | |- ( ( ! ` N ) e. NN -> 0 <_ ( ! ` N ) ) |
| 43 | 21 42 | syl | |- ( N e. NN0 -> 0 <_ ( ! ` N ) ) |
| 44 | 43 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> 0 <_ ( ! ` N ) ) |
| 45 | 37 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 1 ) e. RR ) |
| 46 | simpr | |- ( ( N e. NN0 /\ k e. NN0 ) -> k e. NN0 ) |
|
| 47 | 36 | nn0ge0d | |- ( N e. NN0 -> 0 <_ ( N + 1 ) ) |
| 48 | 47 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> 0 <_ ( N + 1 ) ) |
| 49 | 45 46 48 | expge0d | |- ( ( N e. NN0 /\ k e. NN0 ) -> 0 <_ ( ( N + 1 ) ^ k ) ) |
| 50 | 35 39 44 49 | mulge0d | |- ( ( N e. NN0 /\ k e. NN0 ) -> 0 <_ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) ) |
| 51 | 40 50 | jca | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) e. RR /\ 0 <_ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) ) ) |
| 52 | nn0addcl | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + k ) e. NN0 ) |
|
| 53 | 52 | faccld | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ! ` ( N + k ) ) e. NN ) |
| 54 | 53 | nnred | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ! ` ( N + k ) ) e. RR ) |
| 55 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 56 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 57 | 56 | nn0red | |- ( k e. NN0 -> ( k + 1 ) e. RR ) |
| 58 | readdcl | |- ( ( N e. RR /\ ( k + 1 ) e. RR ) -> ( N + ( k + 1 ) ) e. RR ) |
|
| 59 | 55 57 58 | syl2an | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + ( k + 1 ) ) e. RR ) |
| 60 | 45 48 59 | jca31 | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( N + 1 ) e. RR /\ 0 <_ ( N + 1 ) ) /\ ( N + ( k + 1 ) ) e. RR ) ) |
| 61 | 51 54 60 | jca31 | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) e. RR /\ 0 <_ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) ) /\ ( ! ` ( N + k ) ) e. RR ) /\ ( ( ( N + 1 ) e. RR /\ 0 <_ ( N + 1 ) ) /\ ( N + ( k + 1 ) ) e. RR ) ) ) |
| 62 | 61 | adantr | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) ) -> ( ( ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) e. RR /\ 0 <_ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) ) /\ ( ! ` ( N + k ) ) e. RR ) /\ ( ( ( N + 1 ) e. RR /\ 0 <_ ( N + 1 ) ) /\ ( N + ( k + 1 ) ) e. RR ) ) ) |
| 63 | 32 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 0 ) = N ) |
| 64 | nn0ge0 | |- ( k e. NN0 -> 0 <_ k ) |
|
| 65 | 64 | adantl | |- ( ( N e. NN0 /\ k e. NN0 ) -> 0 <_ k ) |
| 66 | 0re | |- 0 e. RR |
|
| 67 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 68 | 67 | adantl | |- ( ( N e. NN0 /\ k e. NN0 ) -> k e. RR ) |
| 69 | 55 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> N e. RR ) |
| 70 | leadd2 | |- ( ( 0 e. RR /\ k e. RR /\ N e. RR ) -> ( 0 <_ k <-> ( N + 0 ) <_ ( N + k ) ) ) |
|
| 71 | 66 68 69 70 | mp3an2i | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( 0 <_ k <-> ( N + 0 ) <_ ( N + k ) ) ) |
| 72 | 65 71 | mpbid | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 0 ) <_ ( N + k ) ) |
| 73 | 63 72 | eqbrtrrd | |- ( ( N e. NN0 /\ k e. NN0 ) -> N <_ ( N + k ) ) |
| 74 | 52 | nn0red | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + k ) e. RR ) |
| 75 | 1re | |- 1 e. RR |
|
| 76 | leadd1 | |- ( ( N e. RR /\ ( N + k ) e. RR /\ 1 e. RR ) -> ( N <_ ( N + k ) <-> ( N + 1 ) <_ ( ( N + k ) + 1 ) ) ) |
|
| 77 | 75 76 | mp3an3 | |- ( ( N e. RR /\ ( N + k ) e. RR ) -> ( N <_ ( N + k ) <-> ( N + 1 ) <_ ( ( N + k ) + 1 ) ) ) |
| 78 | 69 74 77 | syl2anc | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N <_ ( N + k ) <-> ( N + 1 ) <_ ( ( N + k ) + 1 ) ) ) |
| 79 | 73 78 | mpbid | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 1 ) <_ ( ( N + k ) + 1 ) ) |
| 80 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 81 | ax-1cn | |- 1 e. CC |
|
| 82 | addass | |- ( ( N e. CC /\ k e. CC /\ 1 e. CC ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
|
| 83 | 81 82 | mp3an3 | |- ( ( N e. CC /\ k e. CC ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
| 84 | 24 80 83 | syl2an | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + k ) + 1 ) = ( N + ( k + 1 ) ) ) |
| 85 | 79 84 | breqtrd | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 1 ) <_ ( N + ( k + 1 ) ) ) |
| 86 | 85 | anim1ci | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) ) -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) /\ ( N + 1 ) <_ ( N + ( k + 1 ) ) ) ) |
| 87 | lemul12a | |- ( ( ( ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) e. RR /\ 0 <_ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) ) /\ ( ! ` ( N + k ) ) e. RR ) /\ ( ( ( N + 1 ) e. RR /\ 0 <_ ( N + 1 ) ) /\ ( N + ( k + 1 ) ) e. RR ) ) -> ( ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) /\ ( N + 1 ) <_ ( N + ( k + 1 ) ) ) -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) x. ( N + 1 ) ) <_ ( ( ! ` ( N + k ) ) x. ( N + ( k + 1 ) ) ) ) ) |
|
| 88 | 62 86 87 | sylc | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) ) -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) x. ( N + 1 ) ) <_ ( ( ! ` ( N + k ) ) x. ( N + ( k + 1 ) ) ) ) |
| 89 | expp1 | |- ( ( ( N + 1 ) e. CC /\ k e. NN0 ) -> ( ( N + 1 ) ^ ( k + 1 ) ) = ( ( ( N + 1 ) ^ k ) x. ( N + 1 ) ) ) |
|
| 90 | 26 89 | sylan | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) ^ ( k + 1 ) ) = ( ( ( N + 1 ) ^ k ) x. ( N + 1 ) ) ) |
| 91 | 90 | oveq2d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ ( k + 1 ) ) ) = ( ( ! ` N ) x. ( ( ( N + 1 ) ^ k ) x. ( N + 1 ) ) ) ) |
| 92 | 29 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ! ` N ) e. CC ) |
| 93 | expcl | |- ( ( ( N + 1 ) e. CC /\ k e. NN0 ) -> ( ( N + 1 ) ^ k ) e. CC ) |
|
| 94 | 26 93 | sylan | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( N + 1 ) ^ k ) e. CC ) |
| 95 | 26 | adantr | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( N + 1 ) e. CC ) |
| 96 | 92 94 95 | mulassd | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) x. ( N + 1 ) ) = ( ( ! ` N ) x. ( ( ( N + 1 ) ^ k ) x. ( N + 1 ) ) ) ) |
| 97 | 91 96 | eqtr4d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ ( k + 1 ) ) ) = ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) x. ( N + 1 ) ) ) |
| 98 | 97 | adantr | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ ( k + 1 ) ) ) = ( ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) x. ( N + 1 ) ) ) |
| 99 | facp1 | |- ( ( N + k ) e. NN0 -> ( ! ` ( ( N + k ) + 1 ) ) = ( ( ! ` ( N + k ) ) x. ( ( N + k ) + 1 ) ) ) |
|
| 100 | 52 99 | syl | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ! ` ( ( N + k ) + 1 ) ) = ( ( ! ` ( N + k ) ) x. ( ( N + k ) + 1 ) ) ) |
| 101 | 84 | fveq2d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ! ` ( ( N + k ) + 1 ) ) = ( ! ` ( N + ( k + 1 ) ) ) ) |
| 102 | 84 | oveq2d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ( ! ` ( N + k ) ) x. ( ( N + k ) + 1 ) ) = ( ( ! ` ( N + k ) ) x. ( N + ( k + 1 ) ) ) ) |
| 103 | 100 101 102 | 3eqtr3d | |- ( ( N e. NN0 /\ k e. NN0 ) -> ( ! ` ( N + ( k + 1 ) ) ) = ( ( ! ` ( N + k ) ) x. ( N + ( k + 1 ) ) ) ) |
| 104 | 103 | adantr | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) ) -> ( ! ` ( N + ( k + 1 ) ) ) = ( ( ! ` ( N + k ) ) x. ( N + ( k + 1 ) ) ) ) |
| 105 | 88 98 104 | 3brtr4d | |- ( ( ( N e. NN0 /\ k e. NN0 ) /\ ( ( ! ` N ) x. ( ( N + 1 ) ^ k ) ) <_ ( ! ` ( N + k ) ) ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ ( k + 1 ) ) ) <_ ( ! ` ( N + ( k + 1 ) ) ) ) |
| 106 | 5 10 15 20 34 105 | nn0indd | |- ( ( N e. NN0 /\ M e. NN0 ) -> ( ( ! ` N ) x. ( ( N + 1 ) ^ M ) ) <_ ( ! ` ( N + M ) ) ) |