This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climshft | |- ( ( M e. ZZ /\ F e. V ) -> ( ( F shift M ) ~~> A <-> F ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( f = F -> ( f shift M ) = ( F shift M ) ) |
|
| 2 | 1 | breq1d | |- ( f = F -> ( ( f shift M ) ~~> A <-> ( F shift M ) ~~> A ) ) |
| 3 | breq1 | |- ( f = F -> ( f ~~> A <-> F ~~> A ) ) |
|
| 4 | 2 3 | bibi12d | |- ( f = F -> ( ( ( f shift M ) ~~> A <-> f ~~> A ) <-> ( ( F shift M ) ~~> A <-> F ~~> A ) ) ) |
| 5 | 4 | imbi2d | |- ( f = F -> ( ( M e. ZZ -> ( ( f shift M ) ~~> A <-> f ~~> A ) ) <-> ( M e. ZZ -> ( ( F shift M ) ~~> A <-> F ~~> A ) ) ) ) |
| 6 | znegcl | |- ( M e. ZZ -> -u M e. ZZ ) |
|
| 7 | ovex | |- ( f shift M ) e. _V |
|
| 8 | 7 | climshftlem | |- ( -u M e. ZZ -> ( ( f shift M ) ~~> A -> ( ( f shift M ) shift -u M ) ~~> A ) ) |
| 9 | 6 8 | syl | |- ( M e. ZZ -> ( ( f shift M ) ~~> A -> ( ( f shift M ) shift -u M ) ~~> A ) ) |
| 10 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 11 | ovexd | |- ( M e. ZZ -> ( ( f shift M ) shift -u M ) e. _V ) |
|
| 12 | vex | |- f e. _V |
|
| 13 | 12 | a1i | |- ( M e. ZZ -> f e. _V ) |
| 14 | id | |- ( M e. ZZ -> M e. ZZ ) |
|
| 15 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 16 | eluzelcn | |- ( k e. ( ZZ>= ` M ) -> k e. CC ) |
|
| 17 | 12 | shftcan1 | |- ( ( M e. CC /\ k e. CC ) -> ( ( ( f shift M ) shift -u M ) ` k ) = ( f ` k ) ) |
| 18 | 15 16 17 | syl2an | |- ( ( M e. ZZ /\ k e. ( ZZ>= ` M ) ) -> ( ( ( f shift M ) shift -u M ) ` k ) = ( f ` k ) ) |
| 19 | 10 11 13 14 18 | climeq | |- ( M e. ZZ -> ( ( ( f shift M ) shift -u M ) ~~> A <-> f ~~> A ) ) |
| 20 | 9 19 | sylibd | |- ( M e. ZZ -> ( ( f shift M ) ~~> A -> f ~~> A ) ) |
| 21 | 12 | climshftlem | |- ( M e. ZZ -> ( f ~~> A -> ( f shift M ) ~~> A ) ) |
| 22 | 20 21 | impbid | |- ( M e. ZZ -> ( ( f shift M ) ~~> A <-> f ~~> A ) ) |
| 23 | 5 22 | vtoclg | |- ( F e. V -> ( M e. ZZ -> ( ( F shift M ) ~~> A <-> F ~~> A ) ) ) |
| 24 | 23 | impcom | |- ( ( M e. ZZ /\ F e. V ) -> ( ( F shift M ) ~~> A <-> F ~~> A ) ) |