This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqshft.1 | |- F e. _V |
|
| Assertion | seqshft | |- ( ( M e. ZZ /\ N e. ZZ ) -> seq M ( .+ , ( F shift N ) ) = ( seq ( M - N ) ( .+ , F ) shift N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqshft.1 | |- F e. _V |
|
| 2 | seqfn | |- ( M e. ZZ -> seq M ( .+ , ( F shift N ) ) Fn ( ZZ>= ` M ) ) |
|
| 3 | 2 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> seq M ( .+ , ( F shift N ) ) Fn ( ZZ>= ` M ) ) |
| 4 | zsubcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
|
| 5 | seqfn | |- ( ( M - N ) e. ZZ -> seq ( M - N ) ( .+ , F ) Fn ( ZZ>= ` ( M - N ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( M e. ZZ /\ N e. ZZ ) -> seq ( M - N ) ( .+ , F ) Fn ( ZZ>= ` ( M - N ) ) ) |
| 7 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 8 | 7 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. CC ) |
| 9 | seqex | |- seq ( M - N ) ( .+ , F ) e. _V |
|
| 10 | 9 | shftfn | |- ( ( seq ( M - N ) ( .+ , F ) Fn ( ZZ>= ` ( M - N ) ) /\ N e. CC ) -> ( seq ( M - N ) ( .+ , F ) shift N ) Fn { x e. CC | ( x - N ) e. ( ZZ>= ` ( M - N ) ) } ) |
| 11 | 6 8 10 | syl2anc | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( seq ( M - N ) ( .+ , F ) shift N ) Fn { x e. CC | ( x - N ) e. ( ZZ>= ` ( M - N ) ) } ) |
| 12 | simpr | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 13 | shftuz | |- ( ( N e. ZZ /\ ( M - N ) e. ZZ ) -> { x e. CC | ( x - N ) e. ( ZZ>= ` ( M - N ) ) } = ( ZZ>= ` ( ( M - N ) + N ) ) ) |
|
| 14 | 12 4 13 | syl2anc | |- ( ( M e. ZZ /\ N e. ZZ ) -> { x e. CC | ( x - N ) e. ( ZZ>= ` ( M - N ) ) } = ( ZZ>= ` ( ( M - N ) + N ) ) ) |
| 15 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 16 | npcan | |- ( ( M e. CC /\ N e. CC ) -> ( ( M - N ) + N ) = M ) |
|
| 17 | 15 7 16 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M - N ) + N ) = M ) |
| 18 | 17 | fveq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ZZ>= ` ( ( M - N ) + N ) ) = ( ZZ>= ` M ) ) |
| 19 | 14 18 | eqtrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> { x e. CC | ( x - N ) e. ( ZZ>= ` ( M - N ) ) } = ( ZZ>= ` M ) ) |
| 20 | 19 | fneq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( seq ( M - N ) ( .+ , F ) shift N ) Fn { x e. CC | ( x - N ) e. ( ZZ>= ` ( M - N ) ) } <-> ( seq ( M - N ) ( .+ , F ) shift N ) Fn ( ZZ>= ` M ) ) ) |
| 21 | 11 20 | mpbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( seq ( M - N ) ( .+ , F ) shift N ) Fn ( ZZ>= ` M ) ) |
| 22 | negsub | |- ( ( M e. CC /\ N e. CC ) -> ( M + -u N ) = ( M - N ) ) |
|
| 23 | 15 7 22 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M + -u N ) = ( M - N ) ) |
| 24 | 23 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> ( M + -u N ) = ( M - N ) ) |
| 25 | 24 | seqeq1d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> seq ( M + -u N ) ( .+ , F ) = seq ( M - N ) ( .+ , F ) ) |
| 26 | eluzelcn | |- ( z e. ( ZZ>= ` M ) -> z e. CC ) |
|
| 27 | negsub | |- ( ( z e. CC /\ N e. CC ) -> ( z + -u N ) = ( z - N ) ) |
|
| 28 | 26 8 27 | syl2anr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> ( z + -u N ) = ( z - N ) ) |
| 29 | 25 28 | fveq12d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> ( seq ( M + -u N ) ( .+ , F ) ` ( z + -u N ) ) = ( seq ( M - N ) ( .+ , F ) ` ( z - N ) ) ) |
| 30 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> z e. ( ZZ>= ` M ) ) |
|
| 31 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 32 | 31 | ad2antlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> -u N e. ZZ ) |
| 33 | elfzelz | |- ( y e. ( M ... z ) -> y e. ZZ ) |
|
| 34 | 33 | zcnd | |- ( y e. ( M ... z ) -> y e. CC ) |
| 35 | 1 | shftval | |- ( ( N e. CC /\ y e. CC ) -> ( ( F shift N ) ` y ) = ( F ` ( y - N ) ) ) |
| 36 | negsub | |- ( ( y e. CC /\ N e. CC ) -> ( y + -u N ) = ( y - N ) ) |
|
| 37 | 36 | ancoms | |- ( ( N e. CC /\ y e. CC ) -> ( y + -u N ) = ( y - N ) ) |
| 38 | 37 | fveq2d | |- ( ( N e. CC /\ y e. CC ) -> ( F ` ( y + -u N ) ) = ( F ` ( y - N ) ) ) |
| 39 | 35 38 | eqtr4d | |- ( ( N e. CC /\ y e. CC ) -> ( ( F shift N ) ` y ) = ( F ` ( y + -u N ) ) ) |
| 40 | 7 34 39 | syl2an | |- ( ( N e. ZZ /\ y e. ( M ... z ) ) -> ( ( F shift N ) ` y ) = ( F ` ( y + -u N ) ) ) |
| 41 | 40 | ad4ant24 | |- ( ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) /\ y e. ( M ... z ) ) -> ( ( F shift N ) ` y ) = ( F ` ( y + -u N ) ) ) |
| 42 | 30 32 41 | seqshft2 | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> ( seq M ( .+ , ( F shift N ) ) ` z ) = ( seq ( M + -u N ) ( .+ , F ) ` ( z + -u N ) ) ) |
| 43 | 9 | shftval | |- ( ( N e. CC /\ z e. CC ) -> ( ( seq ( M - N ) ( .+ , F ) shift N ) ` z ) = ( seq ( M - N ) ( .+ , F ) ` ( z - N ) ) ) |
| 44 | 8 26 43 | syl2an | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> ( ( seq ( M - N ) ( .+ , F ) shift N ) ` z ) = ( seq ( M - N ) ( .+ , F ) ` ( z - N ) ) ) |
| 45 | 29 42 44 | 3eqtr4d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ z e. ( ZZ>= ` M ) ) -> ( seq M ( .+ , ( F shift N ) ) ` z ) = ( ( seq ( M - N ) ( .+ , F ) shift N ) ` z ) ) |
| 46 | 3 21 45 | eqfnfvd | |- ( ( M e. ZZ /\ N e. ZZ ) -> seq M ( .+ , ( F shift N ) ) = ( seq ( M - N ) ( .+ , F ) shift N ) ) |