This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunmbl2 | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 | ⊢ ( 𝐴 ≼ ℕ ↔ ( 𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ ) ) | |
| 2 | nnenom | ⊢ ℕ ≈ ω | |
| 3 | sdomentr | ⊢ ( ( 𝐴 ≺ ℕ ∧ ℕ ≈ ω ) → 𝐴 ≺ ω ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ≺ ℕ → 𝐴 ≺ ω ) |
| 5 | isfinite | ⊢ ( 𝐴 ∈ Fin ↔ 𝐴 ≺ ω ) | |
| 6 | finiunmbl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) | |
| 7 | 6 | ex | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 8 | 5 7 | sylbir | ⊢ ( 𝐴 ≺ ω → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝐴 ≺ ℕ → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 10 | bren | ⊢ ( 𝐴 ≈ ℕ ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ℕ ) | |
| 11 | nfv | ⊢ Ⅎ 𝑛 𝑓 : 𝐴 –1-1-onto→ ℕ | |
| 12 | nfcv | ⊢ Ⅎ 𝑛 ℕ | |
| 13 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 | |
| 14 | 13 | nfcri | ⊢ Ⅎ 𝑛 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 |
| 15 | 12 14 | nfrexw | ⊢ Ⅎ 𝑛 ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 |
| 16 | f1of | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → 𝑓 : 𝐴 ⟶ ℕ ) | |
| 17 | 16 | ffvelcdmda | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ ℕ ) |
| 18 | 17 | 3adant3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑓 ‘ 𝑛 ) ∈ ℕ ) |
| 19 | simp3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 20 | f1ocnvfv1 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) = 𝑛 ) | |
| 21 | 20 | 3adant3 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) = 𝑛 ) |
| 22 | 21 | eqcomd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑛 = ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 23 | csbeq1a | ⊢ ( 𝑛 = ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) → 𝐵 = ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝑛 ⦌ 𝐵 ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝑛 ⦌ 𝐵 ) |
| 25 | 19 24 | eleqtrd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝑛 ⦌ 𝐵 ) |
| 26 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ◡ 𝑓 ‘ 𝑘 ) = ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 27 | 26 | csbeq1d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 = ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝑛 ⦌ 𝐵 ) |
| 28 | 27 | eleq2d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ↔ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝑛 ⦌ 𝐵 ) ) |
| 29 | 28 | rspcev | ⊢ ( ( ( 𝑓 ‘ 𝑛 ) ∈ ℕ ∧ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑛 ) ) / 𝑛 ⦌ 𝐵 ) → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 30 | 18 25 29 | syl2anc | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑛 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 31 | 30 | 3exp | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → ( 𝑛 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) ) |
| 32 | 11 15 31 | rexlimd | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → ( ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 → ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 33 | f1ocnvdm | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑘 ∈ ℕ ) → ( ◡ 𝑓 ‘ 𝑘 ) ∈ 𝐴 ) | |
| 34 | csbeq1a | ⊢ ( 𝑛 = ( ◡ 𝑓 ‘ 𝑘 ) → 𝐵 = ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) | |
| 35 | 34 | eleq2d | ⊢ ( 𝑛 = ( ◡ 𝑓 ‘ 𝑘 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 36 | 14 35 | rspce | ⊢ ( ( ( ◡ 𝑓 ‘ 𝑘 ) ∈ 𝐴 ∧ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) → ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ) |
| 37 | 36 | ex | ⊢ ( ( ◡ 𝑓 ‘ 𝑘 ) ∈ 𝐴 → ( 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 → ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
| 38 | 33 37 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 → ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
| 39 | 38 | rexlimdva | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → ( ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 → ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ) ) |
| 40 | 32 39 | impbid | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → ( ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 41 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ 𝐴 𝐵 ↔ ∃ 𝑛 ∈ 𝐴 𝑥 ∈ 𝐵 ) | |
| 42 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ↔ ∃ 𝑘 ∈ ℕ 𝑥 ∈ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) | |
| 43 | 40 41 42 | 3bitr4g | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → ( 𝑥 ∈ ∪ 𝑛 ∈ 𝐴 𝐵 ↔ 𝑥 ∈ ∪ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) ) |
| 44 | 43 | eqrdv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → ∪ 𝑛 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑛 ∈ 𝐴 𝐵 = ∪ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ) |
| 46 | rspcsbela | ⊢ ( ( ( ◡ 𝑓 ‘ 𝑘 ) ∈ 𝐴 ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∈ dom vol ) | |
| 47 | 33 46 | sylan | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ 𝑘 ∈ ℕ ) ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∈ dom vol ) |
| 48 | 47 | an32s | ⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ∧ 𝑘 ∈ ℕ ) → ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∈ dom vol ) |
| 49 | 48 | ralrimiva | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∀ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∈ dom vol ) |
| 50 | iunmbl | ⊢ ( ∀ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∈ dom vol ) | |
| 51 | 49 50 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑘 ∈ ℕ ⦋ ( ◡ 𝑓 ‘ 𝑘 ) / 𝑛 ⦌ 𝐵 ∈ dom vol ) |
| 52 | 45 51 | eqeltrd | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ ℕ ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) |
| 53 | 52 | ex | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ ℕ → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 54 | 53 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ ℕ → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 55 | 10 54 | sylbi | ⊢ ( 𝐴 ≈ ℕ → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 56 | 9 55 | jaoi | ⊢ ( ( 𝐴 ≺ ℕ ∨ 𝐴 ≈ ℕ ) → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 57 | 1 56 | sylbi | ⊢ ( 𝐴 ≼ ℕ → ( ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 58 | 57 | imp | ⊢ ( ( 𝐴 ≼ ℕ ∧ ∀ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol ) |