This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship between subclass and union. Theorem 26 of Suppes p. 27. (Contributed by NM, 30-Aug-1993) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssequn1 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom | ⊢ ( ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) | |
| 2 | pm4.72 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) | |
| 3 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 4 | 3 | bibi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 5 | 1 2 4 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 7 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 8 | dfcleq | ⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ 𝐵 ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |