This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volun | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → 𝐴 ∈ dom vol ) | |
| 2 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 3 | 1 2 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
| 4 | simpl2 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → 𝐵 ∈ dom vol ) | |
| 5 | mblss | ⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → 𝐵 ⊆ ℝ ) |
| 7 | 3 6 | unssd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ) |
| 8 | readdcl | ⊢ ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ) |
| 10 | simprl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 11 | simprr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝐵 ) ∈ ℝ ) | |
| 12 | ovolun | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) | |
| 13 | 3 10 6 11 12 | syl22anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
| 14 | ovollecl | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ∧ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ ) | |
| 15 | 7 9 13 14 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ ) |
| 16 | mblsplit | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐴 ∪ 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) ) ) | |
| 17 | 1 7 15 16 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) ) ) |
| 18 | simpl3 | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) | |
| 19 | indir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) = ( ( 𝐴 ∩ 𝐴 ) ∪ ( 𝐵 ∩ 𝐴 ) ) | |
| 20 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 21 | incom | ⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) | |
| 22 | 20 21 | uneq12i | ⊢ ( ( 𝐴 ∩ 𝐴 ) ∪ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐴 ∪ ( 𝐴 ∩ 𝐵 ) ) |
| 23 | unabs | ⊢ ( 𝐴 ∪ ( 𝐴 ∩ 𝐵 ) ) = 𝐴 | |
| 24 | 22 23 | eqtri | ⊢ ( ( 𝐴 ∩ 𝐴 ) ∪ ( 𝐵 ∩ 𝐴 ) ) = 𝐴 |
| 25 | 19 24 | eqtri | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) = 𝐴 |
| 26 | 25 | a1i | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) = 𝐴 ) |
| 27 | 26 | fveq2d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) ) = ( vol* ‘ 𝐴 ) ) |
| 28 | uncom | ⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐵 ∪ 𝐴 ) | |
| 29 | 28 | difeq1i | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) = ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) |
| 30 | difun2 | ⊢ ( ( 𝐵 ∪ 𝐴 ) ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) | |
| 31 | 29 30 | eqtri | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) |
| 32 | 21 | eqeq1i | ⊢ ( ( 𝐵 ∩ 𝐴 ) = ∅ ↔ ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 33 | disj3 | ⊢ ( ( 𝐵 ∩ 𝐴 ) = ∅ ↔ 𝐵 = ( 𝐵 ∖ 𝐴 ) ) | |
| 34 | 32 33 | sylbb1 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → 𝐵 = ( 𝐵 ∖ 𝐴 ) ) |
| 35 | 31 34 | eqtr4id | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) = 𝐵 ) |
| 36 | 35 | fveq2d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) = ( vol* ‘ 𝐵 ) ) |
| 37 | 27 36 | oveq12d | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) ) = ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
| 38 | 18 37 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∩ 𝐴 ) ) + ( vol* ‘ ( ( 𝐴 ∪ 𝐵 ) ∖ 𝐴 ) ) ) = ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
| 39 | 17 38 | eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
| 40 | 39 | ex | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) ) |
| 41 | mblvol | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝐴 ∈ dom vol → ( ( vol ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ 𝐴 ) ∈ ℝ ) ) |
| 43 | mblvol | ⊢ ( 𝐵 ∈ dom vol → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) ) | |
| 44 | 43 | eleq1d | ⊢ ( 𝐵 ∈ dom vol → ( ( vol ‘ 𝐵 ) ∈ ℝ ↔ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
| 45 | 42 44 | bi2anan9 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) |
| 46 | 45 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) |
| 47 | unmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∪ 𝐵 ) ∈ dom vol ) | |
| 48 | mblvol | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 50 | 41 43 | oveqan12d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) |
| 51 | 49 50 | eqeq12d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) ↔ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) ) |
| 52 | 51 | 3adant3 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) ↔ ( vol* ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol* ‘ 𝐴 ) + ( vol* ‘ 𝐵 ) ) ) ) |
| 53 | 40 46 52 | 3imtr4d | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) ) ) |
| 54 | 53 | imp | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) ) |