This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a set of extended reals containing plus infinity is plus infinity. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supxrpnf | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℝ* ) ) | |
| 2 | pnfnlt | ⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) | |
| 3 | 1 2 | syl6 | ⊢ ( 𝐴 ⊆ ℝ* → ( 𝑦 ∈ 𝐴 → ¬ +∞ < 𝑦 ) ) |
| 4 | 3 | ralrimiv | ⊢ ( 𝐴 ⊆ ℝ* → ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ) |
| 5 | breq2 | ⊢ ( 𝑧 = +∞ → ( 𝑦 < 𝑧 ↔ 𝑦 < +∞ ) ) | |
| 6 | 5 | rspcev | ⊢ ( ( +∞ ∈ 𝐴 ∧ 𝑦 < +∞ ) → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) |
| 7 | 6 | ex | ⊢ ( +∞ ∈ 𝐴 → ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 8 | 7 | ralrimivw | ⊢ ( +∞ ∈ 𝐴 → ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) |
| 9 | 4 8 | anim12i | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) |
| 10 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 11 | supxr | ⊢ ( ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 12 | 10 11 | mpanl2 | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ ( ∀ 𝑦 ∈ 𝐴 ¬ +∞ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < +∞ → ∃ 𝑧 ∈ 𝐴 𝑦 < 𝑧 ) ) ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |
| 13 | 9 12 | syldan | ⊢ ( ( 𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴 ) → sup ( 𝐴 , ℝ* , < ) = +∞ ) |