This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iundisj.1 | ⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) | |
| Assertion | iundisj2 | ⊢ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iundisj.1 | ⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) | |
| 2 | tru | ⊢ ⊤ | |
| 3 | eqeq12 | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) | |
| 4 | csbeq1 | ⊢ ( 𝑎 = 𝑥 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) | |
| 5 | csbeq1 | ⊢ ( 𝑏 = 𝑦 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) | |
| 6 | 4 5 | ineqan12d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 8 | 3 7 | orbi12d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
| 9 | eqeq12 | ⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑦 = 𝑥 ) ) | |
| 10 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 11 | 9 10 | bitrdi | ⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( 𝑎 = 𝑏 ↔ 𝑥 = 𝑦 ) ) |
| 12 | csbeq1 | ⊢ ( 𝑎 = 𝑦 → ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) | |
| 13 | csbeq1 | ⊢ ( 𝑏 = 𝑥 → ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) | |
| 14 | 12 13 | ineqan12d | ⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 15 | incom | ⊢ ( ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) | |
| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
| 17 | 16 | eqeq1d | ⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ↔ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 18 | 11 17 | orbi12d | ⊢ ( ( 𝑎 = 𝑦 ∧ 𝑏 = 𝑥 ) → ( ( 𝑎 = 𝑏 ∨ ( ⦋ 𝑎 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑏 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) |
| 19 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 20 | 19 | a1i | ⊢ ( ⊤ → ℕ ⊆ ℝ ) |
| 21 | biidd | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ↔ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) ) | |
| 22 | nesym | ⊢ ( 𝑦 ≠ 𝑥 ↔ ¬ 𝑥 = 𝑦 ) | |
| 23 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 24 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 25 | id | ⊢ ( 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑦 ) | |
| 26 | leltne | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) | |
| 27 | 23 24 25 26 | syl3an | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 ↔ 𝑦 ≠ 𝑥 ) ) |
| 28 | vex | ⊢ 𝑥 ∈ V | |
| 29 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑥 / 𝑛 ⦌ 𝐴 | |
| 30 | nfcv | ⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 | |
| 31 | 29 30 | nfdif | ⊢ Ⅎ 𝑛 ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
| 32 | csbeq1a | ⊢ ( 𝑛 = 𝑥 → 𝐴 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) | |
| 33 | oveq2 | ⊢ ( 𝑛 = 𝑥 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑥 ) ) | |
| 34 | 33 | iuneq1d | ⊢ ( 𝑛 = 𝑥 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
| 35 | 32 34 | difeq12d | ⊢ ( 𝑛 = 𝑥 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ) |
| 36 | 28 31 35 | csbief | ⊢ ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) |
| 37 | vex | ⊢ 𝑦 ∈ V | |
| 38 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑦 / 𝑛 ⦌ 𝐴 | |
| 39 | nfcv | ⊢ Ⅎ 𝑛 ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 | |
| 40 | 38 39 | nfdif | ⊢ Ⅎ 𝑛 ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 41 | csbeq1a | ⊢ ( 𝑛 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) | |
| 42 | oveq2 | ⊢ ( 𝑛 = 𝑦 → ( 1 ..^ 𝑛 ) = ( 1 ..^ 𝑦 ) ) | |
| 43 | 42 | iuneq1d | ⊢ ( 𝑛 = 𝑦 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 = ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 44 | 41 43 | difeq12d | ⊢ ( 𝑛 = 𝑦 → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
| 45 | 37 40 44 | csbief | ⊢ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) = ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 46 | 36 45 | ineq12i | ⊢ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) |
| 47 | simp1 | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℕ ) | |
| 48 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 49 | 47 48 | eleqtrdi | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 50 | simp2 | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℕ ) | |
| 51 | 50 | nnzd | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℤ ) |
| 52 | simp3 | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) | |
| 53 | elfzo2 | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦 ) ) | |
| 54 | 49 51 52 53 | syl3anbrc | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ( 1 ..^ 𝑦 ) ) |
| 55 | nfcv | ⊢ Ⅎ 𝑛 𝑘 | |
| 56 | nfcv | ⊢ Ⅎ 𝑛 𝐵 | |
| 57 | 55 56 1 | csbhypf | ⊢ ( 𝑥 = 𝑘 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 58 | 57 | equcoms | ⊢ ( 𝑘 = 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 = 𝐵 ) |
| 59 | 58 | eqcomd | ⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ) |
| 60 | 59 | ssiun2s | ⊢ ( 𝑥 ∈ ( 1 ..^ 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 61 | 54 60 | syl | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 62 | 61 | ssdifssd | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ⊆ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) |
| 63 | 62 | ssrind | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ( ⦋ 𝑥 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑥 ) 𝐵 ) ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
| 64 | 46 63 | eqsstrid | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ) |
| 65 | disjdif | ⊢ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ | |
| 66 | sseq0 | ⊢ ( ( ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ⊆ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) ∧ ( ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ∩ ( ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑦 ) 𝐵 ) ) = ∅ ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) | |
| 67 | 64 65 66 | sylancl | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦 ) → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
| 68 | 67 | 3expia | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 69 | 68 | 3adant3 | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 < 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 70 | 27 69 | sylbird | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑦 ≠ 𝑥 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 71 | 22 70 | biimtrrid | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( ¬ 𝑥 = 𝑦 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 72 | 71 | orrd | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 73 | 72 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 ≤ 𝑦 ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 74 | 8 18 20 21 73 | wlogle | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 75 | 2 74 | mpan | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) |
| 76 | 75 | rgen2 | ⊢ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) |
| 77 | disjors | ⊢ ( Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ↔ ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 = 𝑦 ∨ ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∩ ⦋ 𝑦 / 𝑛 ⦌ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = ∅ ) ) | |
| 78 | 76 77 | mpbir | ⊢ Disj 𝑛 ∈ ℕ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) |