This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014) (Proof shortened by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliun.1 | ⊢ 𝑆 = seq 1 ( + , 𝐺 ) | |
| voliun.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) | ||
| Assertion | voliun | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliun.1 | ⊢ 𝑆 = seq 1 ( + , 𝐺 ) | |
| 2 | voliun.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) | |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → 𝐴 ∈ dom vol ) | |
| 4 | 3 | ralimi | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
| 5 | 4 | adantr | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ) |
| 6 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ 𝐴 ) = ( 𝑛 ∈ ℕ ↦ 𝐴 ) | |
| 7 | 6 | fmpt | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol ↔ ( 𝑛 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ dom vol ) |
| 8 | 5 7 | sylib | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ 𝐴 ) : ℕ ⟶ dom vol ) |
| 9 | 6 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
| 10 | 9 | adantrr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
| 11 | 10 | ralimiaa | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 ) |
| 12 | disjeq2 | ⊢ ( ∀ 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = 𝐴 → ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ 𝐴 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑛 ∈ ℕ 𝐴 ) ) |
| 14 | 13 | biimpar | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) |
| 15 | nfcv | ⊢ Ⅎ 𝑖 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) | |
| 16 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) | |
| 17 | fveq2 | ⊢ ( 𝑛 = 𝑖 → ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) | |
| 18 | 15 16 17 | cbvdisj | ⊢ ( Disj 𝑛 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ↔ Disj 𝑖 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
| 19 | 14 18 | sylib | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → Disj 𝑖 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
| 20 | eqid | ⊢ ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) | |
| 21 | eqid | ⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) | |
| 22 | nfcv | ⊢ Ⅎ 𝑚 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) | |
| 23 | nfcv | ⊢ Ⅎ 𝑛 vol | |
| 24 | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) | |
| 25 | 23 24 | nffv | ⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) |
| 26 | 2fveq3 | ⊢ ( 𝑛 = 𝑚 → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) | |
| 27 | 22 25 26 | cbvmpt | ⊢ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
| 28 | 9 | fveq2d | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 29 | 28 | eleq1d | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ 𝐴 ) ∈ ℝ ) ) |
| 30 | 29 | biimprd | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝐴 ∈ dom vol ) → ( ( vol ‘ 𝐴 ) ∈ ℝ → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) ) |
| 31 | 30 | impr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 32 | 31 | ralimiaa | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 33 | 32 | adantr | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 34 | nfv | ⊢ Ⅎ 𝑖 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ | |
| 35 | 23 16 | nffv | ⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) |
| 36 | 35 | nfel1 | ⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ |
| 37 | 2fveq3 | ⊢ ( 𝑛 = 𝑖 → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑛 = 𝑖 → ( ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) ) |
| 39 | 34 36 38 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ↔ ∀ 𝑖 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 40 | 33 39 | sylib | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑖 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 41 | 8 19 20 21 27 40 | voliunlem3 | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 42 | dfiun2g | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } ) | |
| 43 | 5 42 | syl | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } ) |
| 44 | 6 | rnmpt | ⊢ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) = { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } |
| 45 | 44 | unieqi | ⊢ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) = ∪ { 𝑥 ∣ ∃ 𝑛 ∈ ℕ 𝑥 = 𝐴 } |
| 46 | 43 45 | eqtr4di | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∪ 𝑛 ∈ ℕ 𝐴 = ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) |
| 47 | 46 | fveq2d | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = ( vol ‘ ∪ ran ( 𝑛 ∈ ℕ ↦ 𝐴 ) ) ) |
| 48 | eqid | ⊢ ℕ = ℕ | |
| 49 | 28 | adantrr | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 50 | 49 | ralimiaa | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) |
| 52 | mpteq12 | ⊢ ( ( ℕ = ℕ ∧ ∀ 𝑛 ∈ ℕ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) = ( vol ‘ 𝐴 ) ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) | |
| 53 | 48 51 52 | sylancr | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ 𝐴 ) ) ) |
| 54 | 2 53 | eqtr4id | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) |
| 55 | 54 | seqeq3d | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
| 56 | 1 55 | eqtrid | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → 𝑆 = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
| 57 | 56 | rneqd | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ran 𝑆 = ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) ) |
| 58 | 57 | supeq1d | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( ( 𝑛 ∈ ℕ ↦ 𝐴 ) ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
| 59 | 41 47 58 | 3eqtr4d | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝐴 ∈ dom vol ∧ ( vol ‘ 𝐴 ) ∈ ℝ ) ∧ Disj 𝑛 ∈ ℕ 𝐴 ) → ( vol ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = sup ( ran 𝑆 , ℝ* , < ) ) |