This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by Mario Carneiro, 11-Dec-2016) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | ||
| uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| uniioombllem2.h | ⊢ 𝐻 = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) | ||
| uniioombllem2.k | ⊢ 𝐾 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | ||
| Assertion | uniioombllem2 | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( vol* ∘ 𝐻 ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | |
| 5 | uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 6 | uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 7 | uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 8 | uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 9 | uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 10 | uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 11 | uniioombllem2.h | ⊢ 𝐻 = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) | |
| 12 | uniioombllem2.k | ⊢ 𝐾 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | |
| 13 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 14 | eqid | ⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) | |
| 15 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 1 ∈ ℤ ) | |
| 16 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) = ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) | |
| 17 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem2a | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ran (,) ) |
| 18 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐻 = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 19 | 12 | ioorf | ⊢ 𝐾 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) |
| 20 | 19 | a1i | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐾 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 21 | 20 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐾 = ( 𝑦 ∈ ran (,) ↦ ( 𝐾 ‘ 𝑦 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑦 = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) | |
| 23 | 17 18 21 22 | fmptco | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐾 ∘ 𝐻 ) = ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) |
| 24 | inss2 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) | |
| 25 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 26 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐺 ‘ 𝐽 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 27 | 25 26 | sselid | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐺 ‘ 𝐽 ) ∈ ( ℝ × ℝ ) ) |
| 28 | 1st2nd2 | ⊢ ( ( 𝐺 ‘ 𝐽 ) ∈ ( ℝ × ℝ ) → ( 𝐺 ‘ 𝐽 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) | |
| 29 | 27 28 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐺 ‘ 𝐽 ) = 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) ) |
| 31 | df-ov | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) , ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) 〉 ) | |
| 32 | 30 31 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) = ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 33 | ioossre | ⊢ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ℝ | |
| 34 | 32 33 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ⊆ ℝ ) |
| 35 | 32 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 36 | ovolfcl | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐽 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) | |
| 37 | 7 36 | sylan | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 38 | ovolioo | ⊢ ( ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ≤ ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) (,) ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 40 | 35 39 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 41 | 37 | simp2d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ) |
| 42 | 37 | simp1d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ∈ ℝ ) |
| 43 | 41 42 | resubcld | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( 2nd ‘ ( 𝐺 ‘ 𝐽 ) ) − ( 1st ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) |
| 44 | 40 43 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) |
| 45 | ovolsscl | ⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) | |
| 46 | 24 34 44 45 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) |
| 48 | 12 | ioorcl | ⊢ ( ( ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ran (,) ∧ ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ℝ ) → ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 49 | 17 47 48 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 50 | 23 49 | fmpt3d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 51 | eqid | ⊢ ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) | |
| 52 | 51 | ovolfsf | ⊢ ( ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 53 | 50 52 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 54 | 53 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ) |
| 55 | elrege0 | ⊢ ( ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) ) | |
| 56 | 54 55 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) ) |
| 57 | 56 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 58 | 56 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑛 ∈ ℕ ) → 0 ≤ ( ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ‘ 𝑛 ) ) |
| 59 | 23 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) = ( ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ‘ 𝑧 ) ) |
| 60 | fvex | ⊢ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ V | |
| 61 | eqid | ⊢ ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) | |
| 62 | 61 | fvmpt2 | ⊢ ( ( 𝑧 ∈ ℕ ∧ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ V ) → ( ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ‘ 𝑧 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 63 | 60 62 | mpan2 | ⊢ ( 𝑧 ∈ ℕ → ( ( 𝑧 ∈ ℕ ↦ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ‘ 𝑧 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 64 | 59 63 | sylan9eq | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 65 | 64 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) |
| 66 | 12 | ioorinv | ⊢ ( ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ran (,) → ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 67 | 17 66 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 68 | 65 67 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 69 | 68 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∀ 𝑧 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 70 | 2fveq3 | ⊢ ( 𝑧 = 𝑥 → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ) | |
| 71 | 2fveq3 | ⊢ ( 𝑧 = 𝑥 → ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 72 | 71 | ineq1d | ⊢ ( 𝑧 = 𝑥 → ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 73 | 70 72 | eqeq12d | ⊢ ( 𝑧 = 𝑥 → ( ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ↔ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 74 | 73 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑧 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 75 | 69 74 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 76 | inss1 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) | |
| 77 | 75 76 | eqsstrdi | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑥 ∈ ℕ ) → ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 78 | 77 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∀ 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 79 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 80 | disjss2 | ⊢ ( ∀ 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ⊆ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) → ( Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ) ) | |
| 81 | 78 79 80 | sylc | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → Disj 𝑥 ∈ ℕ ( (,) ‘ ( ( 𝐾 ∘ 𝐻 ) ‘ 𝑥 ) ) ) |
| 82 | 50 81 14 | uniioovol | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) |
| 83 | 67 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( 𝑧 ∈ ℕ ↦ ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) = ( 𝑧 ∈ ℕ ↦ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) |
| 84 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 85 | 25 84 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 86 | 85 49 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ∈ ( ℝ* × ℝ* ) ) |
| 87 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 88 | 87 | a1i | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ) |
| 89 | 88 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → (,) = ( 𝑦 ∈ ( ℝ* × ℝ* ) ↦ ( (,) ‘ 𝑦 ) ) ) |
| 90 | fveq2 | ⊢ ( 𝑦 = ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) → ( (,) ‘ 𝑦 ) = ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) | |
| 91 | 86 23 89 90 | fmptco | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( 𝑧 ∈ ℕ ↦ ( (,) ‘ ( 𝐾 ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) ) ) ) |
| 92 | 83 91 18 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = 𝐻 ) |
| 93 | 92 | rneqd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ran 𝐻 ) |
| 94 | 93 | unieqd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ∪ ran 𝐻 ) |
| 95 | fvex | ⊢ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∈ V | |
| 96 | 95 | inex1 | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ V |
| 97 | 11 | fvmpt2 | ⊢ ( ( 𝑧 ∈ ℕ ∧ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ V ) → ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 98 | 96 97 | mpan2 | ⊢ ( 𝑧 ∈ ℕ → ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ) |
| 99 | incom | ⊢ ( ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 100 | 98 99 | eqtrdi | ⊢ ( 𝑧 ∈ ℕ → ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 101 | 100 | iuneq2i | ⊢ ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ∪ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 102 | iunin2 | ⊢ ∪ 𝑧 ∈ ℕ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 103 | 101 102 | eqtri | ⊢ ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 104 | 17 11 | fmptd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐻 : ℕ ⟶ ran (,) ) |
| 105 | 104 | ffnd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐻 Fn ℕ ) |
| 106 | fniunfv | ⊢ ( 𝐻 Fn ℕ → ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ∪ ran 𝐻 ) | |
| 107 | 105 106 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( 𝐻 ‘ 𝑧 ) = ∪ ran 𝐻 ) |
| 108 | 103 107 | eqtr3id | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ∪ ran 𝐻 ) |
| 109 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 110 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) | |
| 111 | 109 110 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑧 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 112 | 111 | iuneq2dv | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) |
| 113 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 114 | 87 113 | ax-mp | ⊢ (,) Fn ( ℝ* × ℝ* ) |
| 115 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 116 | 109 85 115 | sylancl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 117 | fnfco | ⊢ ( ( (,) Fn ( ℝ* × ℝ* ) ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) Fn ℕ ) | |
| 118 | 114 116 117 | sylancr | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( (,) ∘ 𝐹 ) Fn ℕ ) |
| 119 | fniunfv | ⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 120 | 118 119 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 121 | 120 4 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑧 ) = 𝐴 ) |
| 122 | 112 121 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) = 𝐴 ) |
| 123 | 122 | ineq2d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ ∪ 𝑧 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑧 ) ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) |
| 124 | 94 108 123 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) |
| 125 | 124 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ∪ ran ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |
| 126 | 82 125 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |
| 127 | inss1 | ⊢ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) | |
| 128 | ovolsscl | ⊢ ( ( ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ⊆ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∧ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ⊆ ℝ ∧ ( vol* ‘ ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ∈ ℝ ) | |
| 129 | 127 34 44 128 | mp3an2i | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ∈ ℝ ) |
| 130 | 126 129 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ∈ ℝ ) |
| 131 | 51 14 | ovolsf | ⊢ ( ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 132 | 50 131 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 133 | 132 | frnd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ( 0 [,) +∞ ) ) |
| 134 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 135 | 133 134 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ* ) |
| 136 | 132 | ffnd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) Fn ℕ ) |
| 137 | fnfvelrn | ⊢ ( ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) Fn ℕ ∧ 𝑦 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) | |
| 138 | 136 137 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑦 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) |
| 139 | supxrub | ⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ* ∧ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) | |
| 140 | 135 138 139 | syl2an2r | ⊢ ( ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) ∧ 𝑦 ∈ ℕ ) → ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) |
| 141 | 140 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) |
| 142 | brralrspcev | ⊢ ( ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) | |
| 143 | 130 141 142 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) |
| 144 | 13 14 15 16 57 58 143 | isumsup2 | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⇝ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) ) |
| 145 | 51 | ovolfs2 | ⊢ ( ( 𝐾 ∘ 𝐻 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 146 | 50 145 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) |
| 147 | coass | ⊢ ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( vol* ∘ ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) | |
| 148 | 92 | coeq2d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( vol* ∘ ( (,) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ( vol* ∘ 𝐻 ) ) |
| 149 | 147 148 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( vol* ∘ (,) ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( vol* ∘ 𝐻 ) ) |
| 150 | 146 149 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) = ( vol* ∘ 𝐻 ) ) |
| 151 | 150 | seqeq3d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = seq 1 ( + , ( vol* ∘ 𝐻 ) ) ) |
| 152 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 153 | 133 152 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ ) |
| 154 | 1nn | ⊢ 1 ∈ ℕ | |
| 155 | 132 | fdmd | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ℕ ) |
| 156 | 154 155 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → 1 ∈ dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ) |
| 157 | 156 | ne0d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ) |
| 158 | dm0rn0 | ⊢ ( dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ∅ ↔ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) = ∅ ) | |
| 159 | 158 | necon3bii | ⊢ ( dom seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ↔ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ) |
| 160 | 157 159 | sylib | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ) |
| 161 | breq1 | ⊢ ( 𝑧 = ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) → ( 𝑧 ≤ 𝑥 ↔ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) | |
| 162 | 161 | ralrn | ⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) Fn ℕ → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 163 | 136 162 | syl | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 164 | 163 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℕ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ‘ 𝑦 ) ≤ 𝑥 ) ) |
| 165 | 143 164 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ) |
| 166 | supxrre | ⊢ ( ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ⊆ ℝ ∧ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) 𝑧 ≤ 𝑥 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) ) | |
| 167 | 153 160 165 166 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) ) |
| 168 | 167 126 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐾 ∘ 𝐻 ) ) ) , ℝ , < ) = ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |
| 169 | 144 151 168 | 3brtr3d | ⊢ ( ( 𝜑 ∧ 𝐽 ∈ ℕ ) → seq 1 ( + , ( vol* ∘ 𝐻 ) ) ⇝ ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝐽 ) ) ∩ 𝐴 ) ) ) |