This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | |
| Assertion | ioorf | ⊢ 𝐹 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | |
| 2 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 3 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 4 | ovelrn | ⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑥 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 (,) 𝑏 ) ) ) | |
| 5 | 2 3 4 | mp2b | ⊢ ( 𝑥 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 (,) 𝑏 ) ) |
| 6 | 0le0 | ⊢ 0 ≤ 0 | |
| 7 | df-br | ⊢ ( 0 ≤ 0 ↔ 〈 0 , 0 〉 ∈ ≤ ) | |
| 8 | 6 7 | mpbi | ⊢ 〈 0 , 0 〉 ∈ ≤ |
| 9 | 0xr | ⊢ 0 ∈ ℝ* | |
| 10 | opelxpi | ⊢ ( ( 0 ∈ ℝ* ∧ 0 ∈ ℝ* ) → 〈 0 , 0 〉 ∈ ( ℝ* × ℝ* ) ) | |
| 11 | 9 9 10 | mp2an | ⊢ 〈 0 , 0 〉 ∈ ( ℝ* × ℝ* ) |
| 12 | 8 11 | elini | ⊢ 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) |
| 13 | 12 | a1i | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ 𝑥 = ∅ ) → 〈 0 , 0 〉 ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 14 | simplr | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 = ( 𝑎 (,) 𝑏 ) ) | |
| 15 | 14 | infeq1d | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → inf ( 𝑥 , ℝ* , < ) = inf ( ( 𝑎 (,) 𝑏 ) , ℝ* , < ) ) |
| 16 | simplll | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑎 ∈ ℝ* ) | |
| 17 | simpllr | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑏 ∈ ℝ* ) | |
| 18 | simpr | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → ¬ 𝑥 = ∅ ) | |
| 19 | 18 | neqned | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≠ ∅ ) |
| 20 | 14 19 | eqnetrrd | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝑎 (,) 𝑏 ) ≠ ∅ ) |
| 21 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 22 | idd | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑤 < 𝑏 → 𝑤 < 𝑏 ) ) | |
| 23 | xrltle | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑤 < 𝑏 → 𝑤 ≤ 𝑏 ) ) | |
| 24 | idd | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑎 < 𝑤 → 𝑎 < 𝑤 ) ) | |
| 25 | xrltle | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝑎 < 𝑤 → 𝑎 ≤ 𝑤 ) ) | |
| 26 | 21 22 23 24 25 | ixxlb | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → inf ( ( 𝑎 (,) 𝑏 ) , ℝ* , < ) = 𝑎 ) |
| 27 | 16 17 20 26 | syl3anc | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → inf ( ( 𝑎 (,) 𝑏 ) , ℝ* , < ) = 𝑎 ) |
| 28 | 15 27 | eqtrd | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → inf ( 𝑥 , ℝ* , < ) = 𝑎 ) |
| 29 | 14 | supeq1d | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → sup ( 𝑥 , ℝ* , < ) = sup ( ( 𝑎 (,) 𝑏 ) , ℝ* , < ) ) |
| 30 | 21 22 23 24 25 | ixxub | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → sup ( ( 𝑎 (,) 𝑏 ) , ℝ* , < ) = 𝑏 ) |
| 31 | 16 17 20 30 | syl3anc | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → sup ( ( 𝑎 (,) 𝑏 ) , ℝ* , < ) = 𝑏 ) |
| 32 | 29 31 | eqtrd | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → sup ( 𝑥 , ℝ* , < ) = 𝑏 ) |
| 33 | 28 32 | opeq12d | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 34 | ioon0 | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) | |
| 35 | 34 | ad2antrr | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ↔ 𝑎 < 𝑏 ) ) |
| 36 | 20 35 | mpbid | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑎 < 𝑏 ) |
| 37 | xrltle | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑎 < 𝑏 → 𝑎 ≤ 𝑏 ) ) | |
| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → ( 𝑎 < 𝑏 → 𝑎 ≤ 𝑏 ) ) |
| 39 | 36 38 | mpd | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 𝑎 ≤ 𝑏 ) |
| 40 | df-br | ⊢ ( 𝑎 ≤ 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ ≤ ) | |
| 41 | 39 40 | sylib | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 〈 𝑎 , 𝑏 〉 ∈ ≤ ) |
| 42 | opelxpi | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → 〈 𝑎 , 𝑏 〉 ∈ ( ℝ* × ℝ* ) ) | |
| 43 | 42 | ad2antrr | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 〈 𝑎 , 𝑏 〉 ∈ ( ℝ* × ℝ* ) ) |
| 44 | 41 43 | elind | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 〈 𝑎 , 𝑏 〉 ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 45 | 33 44 | eqeltrd | ⊢ ( ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) ∧ ¬ 𝑥 = ∅ ) → 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 46 | 13 45 | ifclda | ⊢ ( ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) ∧ 𝑥 = ( 𝑎 (,) 𝑏 ) ) → if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 47 | 46 | ex | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑥 = ( 𝑎 (,) 𝑏 ) → if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) ) |
| 48 | 47 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑥 = ( 𝑎 (,) 𝑏 ) → if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 49 | 5 48 | sylbi | ⊢ ( 𝑥 ∈ ran (,) → if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 50 | 1 49 | fmpti | ⊢ 𝐹 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) |