This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) Lemma 565Ca of Fremlin5 p. 213. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| Assertion | uniioovol | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 5 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 6 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 7 | 5 6 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 8 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 9 | 1 7 8 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 10 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) | |
| 11 | 4 9 10 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 12 | 11 | frnd | ⊢ ( 𝜑 → ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ) |
| 13 | sspwuni | ⊢ ( ran ( (,) ∘ 𝐹 ) ⊆ 𝒫 ℝ ↔ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) | |
| 14 | 12 13 | sylib | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
| 15 | ovolcl | ⊢ ( ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ ℝ* ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ ℝ* ) |
| 17 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐹 ) = ( ( abs ∘ − ) ∘ 𝐹 ) | |
| 18 | 17 3 | ovolsf | ⊢ ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 19 | frn | ⊢ ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) | |
| 20 | 1 18 19 | 3syl | ⊢ ( 𝜑 → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 21 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 22 | 20 21 | sstrdi | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
| 23 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 24 | 22 23 | syl | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 25 | ssid | ⊢ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) | |
| 26 | 3 | ovollb | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 27 | 1 25 26 | sylancl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 28 | 3 | fveq1i | ⊢ ( 𝑆 ‘ 𝑛 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑛 ) |
| 29 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 30 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... 𝑛 ) → 𝑥 ∈ ℕ ) | |
| 31 | 17 | ovolfsval | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 32 | 29 30 31 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 33 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 34 | 29 30 33 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 35 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 36 | 29 30 35 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 37 | 36 | elin2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) ) |
| 38 | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) | |
| 39 | 37 38 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) |
| 40 | 39 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) ) |
| 41 | df-ov | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) 〉 ) | |
| 42 | 40 41 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 43 | 34 42 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 44 | ioombl | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ dom vol | |
| 45 | 43 44 | eqeltrdi | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
| 46 | mblvol | ⊢ ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 48 | 43 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 49 | ovolfcl | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 50 | 29 30 49 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 51 | ovolioo | ⊢ ( ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol* ‘ ( ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 53 | 47 48 52 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 54 | 32 53 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( ( abs ∘ − ) ∘ 𝐹 ) ‘ 𝑥 ) = ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 55 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 56 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 57 | 55 56 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 58 | 50 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 59 | 50 | simp1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 60 | 58 59 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( 2nd ‘ ( 𝐹 ‘ 𝑥 ) ) − ( 1st ‘ ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 61 | 53 60 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) |
| 62 | 61 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℂ ) |
| 63 | 54 57 62 | fsumser | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) ‘ 𝑛 ) ) |
| 64 | 28 63 | eqtr4id | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 65 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 66 | 45 61 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑛 ) ) → ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) ) |
| 68 | fz1ssnn | ⊢ ( 1 ... 𝑛 ) ⊆ ℕ | |
| 69 | 1 33 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 70 | 69 | disjeq2dv | ⊢ ( 𝜑 → ( Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ↔ Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 71 | 2 70 | mpbird | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 73 | disjss1 | ⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ( Disj 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) → Disj 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) | |
| 74 | 68 72 73 | mpsyl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → Disj 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 75 | volfiniun | ⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ∧ ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ∈ ℝ ) ∧ Disj 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) | |
| 76 | 65 67 74 75 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = Σ 𝑥 ∈ ( 1 ... 𝑛 ) ( vol ‘ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 77 | 45 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
| 78 | finiunmbl | ⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) | |
| 79 | 65 77 78 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol ) |
| 80 | mblvol | ⊢ ( ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ∈ dom vol → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) | |
| 81 | 79 80 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) = ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 82 | 64 76 81 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) = ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ) |
| 83 | iunss1 | ⊢ ( ( 1 ... 𝑛 ) ⊆ ℕ → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) | |
| 84 | 68 83 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) |
| 85 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 86 | ffn | ⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → ( (,) ∘ 𝐹 ) Fn ℕ ) | |
| 87 | fniunfv | ⊢ ( ( (,) ∘ 𝐹 ) Fn ℕ → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) | |
| 88 | 85 86 87 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ℕ ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) = ∪ ran ( (,) ∘ 𝐹 ) ) |
| 89 | 84 88 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) ) |
| 90 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) |
| 91 | ovolss | ⊢ ( ( ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) ∧ ∪ ran ( (,) ∘ 𝐹 ) ⊆ ℝ ) → ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) | |
| 92 | 89 90 91 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ∪ 𝑥 ∈ ( 1 ... 𝑛 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑥 ) ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
| 93 | 82 92 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
| 94 | 93 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
| 95 | 1 18 | syl | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 96 | ffn | ⊢ ( 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) → 𝑆 Fn ℕ ) | |
| 97 | breq1 | ⊢ ( 𝑦 = ( 𝑆 ‘ 𝑛 ) → ( 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) | |
| 98 | 97 | ralrn | ⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
| 99 | 95 96 98 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
| 100 | 94 99 | mpbird | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
| 101 | supxrleub | ⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) | |
| 102 | 22 16 101 | syl2anc | ⊢ ( 𝜑 → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ↔ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) ) |
| 103 | 100 102 | mpbird | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) ) |
| 104 | 16 24 27 103 | xrletrid | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐹 ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |