This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | |
| Assertion | ioorcl | ⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ran (,) ↦ if ( 𝑥 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝑥 , ℝ* , < ) , sup ( 𝑥 , ℝ* , < ) 〉 ) ) | |
| 2 | 1 | ioorf | ⊢ 𝐹 : ran (,) ⟶ ( ≤ ∩ ( ℝ* × ℝ* ) ) |
| 3 | 2 | ffvelcdmi | ⊢ ( 𝐴 ∈ ran (,) → ( 𝐹 ‘ 𝐴 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ≤ ∩ ( ℝ* × ℝ* ) ) ) |
| 5 | 4 | elin1d | ⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ≤ ) |
| 6 | 1 | ioorval | ⊢ ( 𝐴 ∈ ran (,) → ( 𝐹 ‘ 𝐴 ) = if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) = if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) ) |
| 8 | iftrue | ⊢ ( 𝐴 = ∅ → if ( 𝐴 = ∅ , 〈 0 , 0 〉 , 〈 inf ( 𝐴 , ℝ* , < ) , sup ( 𝐴 , ℝ* , < ) 〉 ) = 〈 0 , 0 〉 ) | |
| 9 | 7 8 | sylan9eq | ⊢ ( ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 = ∅ ) → ( 𝐹 ‘ 𝐴 ) = 〈 0 , 0 〉 ) |
| 10 | 0re | ⊢ 0 ∈ ℝ | |
| 11 | opelxpi | ⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) ) | |
| 12 | 10 10 11 | mp2an | ⊢ 〈 0 , 0 〉 ∈ ( ℝ × ℝ ) |
| 13 | 9 12 | eqeltrdi | ⊢ ( ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 = ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) |
| 14 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 15 | ffn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) | |
| 16 | ovelrn | ⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝐴 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) ) ) | |
| 17 | 14 15 16 | mp2b | ⊢ ( 𝐴 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) ) |
| 18 | 1 | ioorinv2 | ⊢ ( ( 𝑎 (,) 𝑏 ) ≠ ∅ → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) = 〈 𝑎 , 𝑏 〉 ) |
| 19 | 18 | adantl | ⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) = 〈 𝑎 , 𝑏 〉 ) |
| 20 | ioorcl2 | ⊢ ( ( ( 𝑎 (,) 𝑏 ) ≠ ∅ ∧ ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) | |
| 21 | 20 | ancoms | ⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) |
| 22 | opelxpi | ⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → 〈 𝑎 , 𝑏 〉 ∈ ( ℝ × ℝ ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → 〈 𝑎 , 𝑏 〉 ∈ ( ℝ × ℝ ) ) |
| 24 | 19 23 | eqeltrd | ⊢ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ( ℝ × ℝ ) ) |
| 25 | fveq2 | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( vol* ‘ 𝐴 ) = ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ) | |
| 26 | 25 | eleq1d | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ) ) |
| 27 | neeq1 | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( 𝐴 ≠ ∅ ↔ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) ) | |
| 28 | 26 27 | anbi12d | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) ↔ ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) ) ) |
| 29 | fveq2 | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ) | |
| 30 | 29 | eleq1d | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ↔ ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ( ℝ × ℝ ) ) ) |
| 31 | 28 30 | imbi12d | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ↔ ( ( ( vol* ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ℝ ∧ ( 𝑎 (,) 𝑏 ) ≠ ∅ ) → ( 𝐹 ‘ ( 𝑎 (,) 𝑏 ) ) ∈ ( ℝ × ℝ ) ) ) ) |
| 32 | 24 31 | mpbiri | ⊢ ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) |
| 33 | 32 | a1i | ⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) ) |
| 34 | 33 | rexlimivv | ⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝐴 = ( 𝑎 (,) 𝑏 ) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) |
| 35 | 17 34 | sylbi | ⊢ ( 𝐴 ∈ ran (,) → ( ( ( vol* ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) ) |
| 36 | 35 | impl | ⊢ ( ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) ∧ 𝐴 ≠ ∅ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) |
| 37 | 13 36 | pm2.61dane | ⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ℝ × ℝ ) ) |
| 38 | 5 37 | elind | ⊢ ( ( 𝐴 ∈ ran (,) ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐹 ‘ 𝐴 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |