This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttrclse . Show that a suc N element long chain gives membership in the N -th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ttrclselem.1 | ⊢ 𝐹 = rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| Assertion | ttrclselem2 | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttrclselem.1 | ⊢ 𝐹 = rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 2 | suceq | ⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) | |
| 3 | df-1o | ⊢ 1o = suc ∅ | |
| 4 | 2 3 | eqtr4di | ⊢ ( 𝑚 = ∅ → suc 𝑚 = 1o ) |
| 5 | suceq | ⊢ ( suc 𝑚 = 1o → suc suc 𝑚 = suc 1o ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑚 = ∅ → suc suc 𝑚 = suc 1o ) |
| 7 | 6 | fneq2d | ⊢ ( 𝑚 = ∅ → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc 1o ) ) |
| 8 | 4 | fveqeq2d | ⊢ ( 𝑚 = ∅ → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ 1o ) = 𝑋 ) ) |
| 9 | 8 | anbi2d | ⊢ ( 𝑚 = ∅ → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
| 10 | df1o2 | ⊢ 1o = { ∅ } | |
| 11 | 4 10 | eqtrdi | ⊢ ( 𝑚 = ∅ → suc 𝑚 = { ∅ } ) |
| 12 | 11 | raleqdv | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 13 | 0ex | ⊢ ∅ ∈ V | |
| 14 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ ∅ ) ) | |
| 15 | suceq | ⊢ ( 𝑎 = ∅ → suc 𝑎 = suc ∅ ) | |
| 16 | 15 3 | eqtr4di | ⊢ ( 𝑎 = ∅ → suc 𝑎 = 1o ) |
| 17 | 16 | fveq2d | ⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ 1o ) ) |
| 18 | 14 17 | breq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) |
| 19 | 13 18 | ralsn | ⊢ ( ∀ 𝑎 ∈ { ∅ } ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) |
| 20 | 12 19 | bitrdi | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) |
| 21 | 7 9 20 | 3anbi123d | ⊢ ( 𝑚 = ∅ → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) ) |
| 22 | 21 | exbidv | ⊢ ( 𝑚 = ∅ → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) ) |
| 23 | fveq2 | ⊢ ( 𝑚 = ∅ → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ ∅ ) ) | |
| 24 | 23 | eleq2d | ⊢ ( 𝑚 = ∅ → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) |
| 25 | 22 24 | bibi12d | ⊢ ( 𝑚 = ∅ → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) ) |
| 26 | 25 | albidv | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑚 = ∅ → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) ) ) |
| 28 | suceq | ⊢ ( 𝑚 = 𝑛 → suc 𝑚 = suc 𝑛 ) | |
| 29 | suceq | ⊢ ( suc 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) | |
| 30 | 28 29 | syl | ⊢ ( 𝑚 = 𝑛 → suc suc 𝑚 = suc suc 𝑛 ) |
| 31 | 30 | fneq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑛 ) ) |
| 32 | 28 | fveqeq2d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ) |
| 33 | 32 | anbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
| 34 | 28 | raleqdv | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 35 | fveq2 | ⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ 𝑐 ) ) | |
| 36 | suceq | ⊢ ( 𝑎 = 𝑐 → suc 𝑎 = suc 𝑐 ) | |
| 37 | 36 | fveq2d | ⊢ ( 𝑎 = 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 38 | 35 37 | breq12d | ⊢ ( 𝑎 = 𝑐 → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) |
| 39 | 38 | cbvralvw | ⊢ ( ∀ 𝑎 ∈ suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) |
| 40 | 34 39 | bitrdi | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) |
| 41 | 31 33 40 | 3anbi123d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) ) |
| 42 | 41 | exbidv | ⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ) ) |
| 43 | fneq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 Fn suc suc 𝑛 ↔ 𝑔 Fn suc suc 𝑛 ) ) | |
| 44 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) | |
| 45 | 44 | eqeq1d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( 𝑔 ‘ ∅ ) = 𝑦 ) ) |
| 46 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑛 ) = ( 𝑔 ‘ suc 𝑛 ) ) | |
| 47 | 46 | eqeq1d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ↔ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) |
| 48 | 45 47 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
| 49 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑐 ) = ( 𝑔 ‘ 𝑐 ) ) | |
| 50 | fveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ suc 𝑐 ) = ( 𝑔 ‘ suc 𝑐 ) ) | |
| 51 | 49 50 | breq12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ↔ ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
| 52 | 51 | ralbidv | ⊢ ( 𝑓 = 𝑔 → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
| 53 | 43 48 52 | 3anbi123d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 54 | 53 | cbvexvw | ⊢ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑓 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
| 55 | 42 54 | bitrdi | ⊢ ( 𝑚 = 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 56 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 57 | 56 | eleq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 58 | 55 57 | bibi12d | ⊢ ( 𝑚 = 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 59 | 58 | albidv | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 60 | eqeq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ ∅ ) = 𝑦 ↔ ( 𝑔 ‘ ∅ ) = 𝑧 ) ) | |
| 61 | 60 | anbi1d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
| 62 | 61 | 3anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 63 | 62 | exbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 64 | eleq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 65 | 63 64 | bibi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 66 | 65 | cbvalvw | ⊢ ( ∀ 𝑦 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑦 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| 67 | 59 66 | bitrdi | ⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 68 | 67 | imbi2d | ⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 69 | suceq | ⊢ ( 𝑚 = suc 𝑛 → suc 𝑚 = suc suc 𝑛 ) | |
| 70 | suceq | ⊢ ( suc 𝑚 = suc suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛 ) | |
| 71 | 69 70 | syl | ⊢ ( 𝑚 = suc 𝑛 → suc suc 𝑚 = suc suc suc 𝑛 ) |
| 72 | 71 | fneq2d | ⊢ ( 𝑚 = suc 𝑛 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc suc 𝑛 ) ) |
| 73 | 69 | fveqeq2d | ⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) |
| 74 | 73 | anbi2d | ⊢ ( 𝑚 = suc 𝑛 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) ) |
| 75 | 69 | raleqdv | ⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 76 | 72 74 75 | 3anbi123d | ⊢ ( 𝑚 = suc 𝑛 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 77 | 76 | exbidv | ⊢ ( 𝑚 = suc 𝑛 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 78 | fveq2 | ⊢ ( 𝑚 = suc 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ suc 𝑛 ) ) | |
| 79 | 78 | eleq2d | ⊢ ( 𝑚 = suc 𝑛 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) |
| 80 | 77 79 | bibi12d | ⊢ ( 𝑚 = suc 𝑛 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) |
| 81 | 80 | albidv | ⊢ ( 𝑚 = suc 𝑛 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) |
| 82 | 81 | imbi2d | ⊢ ( 𝑚 = suc 𝑛 → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) ) |
| 83 | suceq | ⊢ ( 𝑚 = 𝑁 → suc 𝑚 = suc 𝑁 ) | |
| 84 | suceq | ⊢ ( suc 𝑚 = suc 𝑁 → suc suc 𝑚 = suc suc 𝑁 ) | |
| 85 | 83 84 | syl | ⊢ ( 𝑚 = 𝑁 → suc suc 𝑚 = suc suc 𝑁 ) |
| 86 | 85 | fneq2d | ⊢ ( 𝑚 = 𝑁 → ( 𝑓 Fn suc suc 𝑚 ↔ 𝑓 Fn suc suc 𝑁 ) ) |
| 87 | 83 | fveqeq2d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ↔ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ) |
| 88 | 87 | anbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ) ) |
| 89 | 83 | raleqdv | ⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 90 | 86 88 89 | 3anbi123d | ⊢ ( 𝑚 = 𝑁 → ( ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 91 | 90 | exbidv | ⊢ ( 𝑚 = 𝑁 → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 92 | fveq2 | ⊢ ( 𝑚 = 𝑁 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 93 | 92 | eleq2d | ⊢ ( 𝑚 = 𝑁 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |
| 94 | 91 93 | bibi12d | ⊢ ( 𝑚 = 𝑁 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 95 | 94 | albidv | ⊢ ( 𝑚 = 𝑁 → ( ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ↔ ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 96 | 95 | imbi2d | ⊢ ( 𝑚 = 𝑁 → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑚 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑚 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑚 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) ) |
| 97 | eqeq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ 1o ) = 𝑥 ↔ ( 𝑓 ‘ 1o ) = 𝑋 ) ) | |
| 98 | 97 | anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
| 99 | 98 | anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) ) |
| 100 | 99 | exbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) ) |
| 101 | vex | ⊢ 𝑦 ∈ V | |
| 102 | vex | ⊢ 𝑥 ∈ V | |
| 103 | 101 102 | ifex | ⊢ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ∈ V |
| 104 | eqid | ⊢ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) | |
| 105 | 103 104 | fnmpti | ⊢ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o |
| 106 | equid | ⊢ 𝑦 = 𝑦 | |
| 107 | equid | ⊢ 𝑥 = 𝑥 | |
| 108 | 106 107 | pm3.2i | ⊢ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) |
| 109 | 1oex | ⊢ 1o ∈ V | |
| 110 | 109 | sucex | ⊢ suc 1o ∈ V |
| 111 | 110 | mptex | ⊢ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ∈ V |
| 112 | fneq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 Fn suc 1o ↔ ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ) ) | |
| 113 | fveq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) ) | |
| 114 | 1on | ⊢ 1o ∈ On | |
| 115 | 114 | onordi | ⊢ Ord 1o |
| 116 | 0elsuc | ⊢ ( Ord 1o → ∅ ∈ suc 1o ) | |
| 117 | iftrue | ⊢ ( 𝑏 = ∅ → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = 𝑦 ) | |
| 118 | 117 104 101 | fvmpt | ⊢ ( ∅ ∈ suc 1o → ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) = 𝑦 ) |
| 119 | 115 116 118 | mp2b | ⊢ ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ ∅ ) = 𝑦 |
| 120 | 113 119 | eqtrdi | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ ∅ ) = 𝑦 ) |
| 121 | 120 | eqeq1d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ 𝑦 = 𝑦 ) ) |
| 122 | fveq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ 1o ) = ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) ) | |
| 123 | 109 | sucid | ⊢ 1o ∈ suc 1o |
| 124 | eqeq1 | ⊢ ( 𝑏 = 1o → ( 𝑏 = ∅ ↔ 1o = ∅ ) ) | |
| 125 | 124 | ifbid | ⊢ ( 𝑏 = 1o → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = if ( 1o = ∅ , 𝑦 , 𝑥 ) ) |
| 126 | 1n0 | ⊢ 1o ≠ ∅ | |
| 127 | 126 | neii | ⊢ ¬ 1o = ∅ |
| 128 | 127 | iffalsei | ⊢ if ( 1o = ∅ , 𝑦 , 𝑥 ) = 𝑥 |
| 129 | 125 128 | eqtrdi | ⊢ ( 𝑏 = 1o → if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) = 𝑥 ) |
| 130 | 129 104 102 | fvmpt | ⊢ ( 1o ∈ suc 1o → ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) = 𝑥 ) |
| 131 | 123 130 | ax-mp | ⊢ ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) ‘ 1o ) = 𝑥 |
| 132 | 122 131 | eqtrdi | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( 𝑓 ‘ 1o ) = 𝑥 ) |
| 133 | 132 | eqeq1d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 ‘ 1o ) = 𝑥 ↔ 𝑥 = 𝑥 ) ) |
| 134 | 121 133 | anbi12d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ↔ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) ) ) |
| 135 | 112 134 | anbi12d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) → ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ↔ ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ∧ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) ) ) ) |
| 136 | 111 135 | spcev | ⊢ ( ( ( 𝑏 ∈ suc 1o ↦ if ( 𝑏 = ∅ , 𝑦 , 𝑥 ) ) Fn suc 1o ∧ ( 𝑦 = 𝑦 ∧ 𝑥 = 𝑥 ) ) → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) ) |
| 137 | 105 108 136 | mp2an | ⊢ ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑥 ) ) |
| 138 | 100 137 | vtoclg | ⊢ ( 𝑋 ∈ 𝐴 → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
| 139 | 138 | adantl | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ) |
| 140 | 139 | biantrurd | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) ) |
| 141 | 101 | elpred | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
| 142 | 141 | adantl | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
| 143 | brres | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) | |
| 144 | 143 | adantl | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) |
| 145 | 144 | anbi2d | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑋 ) ) ) ) |
| 146 | 140 142 145 | 3bitr4rd | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ↔ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 147 | df-3an | ⊢ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ) | |
| 148 | breq12 | ⊢ ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) → ( ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ↔ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) | |
| 149 | 148 | adantl | ⊢ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) → ( ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ↔ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
| 150 | 149 | pm5.32i | ⊢ ( ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
| 151 | 147 150 | bitri | ⊢ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
| 152 | 151 | exbii | ⊢ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ∃ 𝑓 ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
| 153 | 19.41v | ⊢ ( ∃ 𝑓 ( ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) | |
| 154 | 152 153 | bitri | ⊢ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) |
| 155 | 154 | a1i | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑋 ) ) ) |
| 156 | 1 | fveq1i | ⊢ ( 𝐹 ‘ ∅ ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) |
| 157 | setlikespec | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) | |
| 158 | 157 | ancoms | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
| 159 | rdg0g | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 160 | 158 159 | syl | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 161 | 156 160 | eqtrid | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 162 | 161 | eleq2d | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑦 ∈ ( 𝐹 ‘ ∅ ) ↔ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) |
| 163 | 146 155 162 | 3bitr4d | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) |
| 164 | 163 | alrimiv | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc 1o ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 1o ) = 𝑋 ) ∧ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ 1o ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ ∅ ) ) ) |
| 165 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 166 | df-rex | ⊢ ( ∃ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) | |
| 167 | 165 166 | bitri | ⊢ ( 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 168 | 101 | elpred | ⊢ ( 𝑧 ∈ V → ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 169 | 168 | elv | ⊢ ( 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) |
| 170 | 169 | anbi2i | ⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 171 | anbi1 | ⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) | |
| 172 | 170 171 | bitr4id | ⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 173 | 172 | alexbii | ⊢ ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 174 | 173 | 3ad2ant3 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑧 ( 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 175 | 167 174 | bitrid | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 176 | nnon | ⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) | |
| 177 | fvex | ⊢ ( 𝐹 ‘ 𝑛 ) ∈ V | |
| 178 | 1 | ttrclselem1 | ⊢ ( 𝑛 ∈ ω → ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 ) |
| 179 | 178 | adantr | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 ) |
| 180 | dfse3 | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) | |
| 181 | 180 | biimpi | ⊢ ( 𝑅 Se 𝐴 → ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 182 | 181 | adantl | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 183 | ssralv | ⊢ ( ( 𝐹 ‘ 𝑛 ) ⊆ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V → ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) ) | |
| 184 | 179 182 183 | sylc | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑅 Se 𝐴 ) → ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 185 | 184 | adantrr | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 186 | iunexg | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ∈ V ∧ ∀ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) | |
| 187 | 177 185 186 | sylancr | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) |
| 188 | nfcv | ⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑋 ) | |
| 189 | nfcv | ⊢ Ⅎ 𝑏 𝑛 | |
| 190 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) | |
| 191 | 190 188 | nfrdg | ⊢ Ⅎ 𝑏 rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 192 | 1 191 | nfcxfr | ⊢ Ⅎ 𝑏 𝐹 |
| 193 | 192 189 | nffv | ⊢ Ⅎ 𝑏 ( 𝐹 ‘ 𝑛 ) |
| 194 | nfcv | ⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 ) | |
| 195 | 193 194 | nfiun | ⊢ Ⅎ 𝑏 ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) |
| 196 | predeq3 | ⊢ ( 𝑤 = 𝑧 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 197 | 196 | cbviunv | ⊢ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑧 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 ) |
| 198 | iuneq1 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑧 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑧 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) | |
| 199 | 197 198 | eqtrid | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 200 | 188 189 195 1 199 | rdgsucmptf | ⊢ ( ( 𝑛 ∈ On ∧ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 201 | 176 187 200 | syl2an2r | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 202 | 201 | 3adant3 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) |
| 203 | 202 | eleq2d | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ↔ 𝑦 ∈ ∪ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑧 ) ) ) |
| 204 | eqeq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ↔ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) | |
| 205 | 204 | anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ) ) |
| 206 | 205 | 3anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 207 | 206 | exbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 208 | eqeq2 | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ↔ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) | |
| 209 | 208 | anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ) ) |
| 210 | 209 | 3anbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 211 | 210 | exbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 212 | 211 | anbi1d | ⊢ ( 𝑥 = 𝑋 → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 213 | 212 | exbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 214 | 207 213 | bibi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ) |
| 215 | 214 | imbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ↔ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ) ) |
| 216 | fvex | ⊢ ( 𝑓 ‘ suc 𝑏 ) ∈ V | |
| 217 | eqid | ⊢ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) | |
| 218 | 216 217 | fnmpti | ⊢ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 |
| 219 | 218 | a1i | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ) |
| 220 | peano2 | ⊢ ( 𝑛 ∈ ω → suc 𝑛 ∈ ω ) | |
| 221 | 220 | adantr | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → suc 𝑛 ∈ ω ) |
| 222 | nnord | ⊢ ( suc 𝑛 ∈ ω → Ord suc 𝑛 ) | |
| 223 | 221 222 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → Ord suc 𝑛 ) |
| 224 | 0elsuc | ⊢ ( Ord suc 𝑛 → ∅ ∈ suc suc 𝑛 ) | |
| 225 | 223 224 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∅ ∈ suc suc 𝑛 ) |
| 226 | suceq | ⊢ ( 𝑏 = ∅ → suc 𝑏 = suc ∅ ) | |
| 227 | 226 | fveq2d | ⊢ ( 𝑏 = ∅ → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc ∅ ) ) |
| 228 | fvex | ⊢ ( 𝑓 ‘ suc ∅ ) ∈ V | |
| 229 | 227 217 228 | fvmpt | ⊢ ( ∅ ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) |
| 230 | 225 229 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) |
| 231 | vex | ⊢ 𝑛 ∈ V | |
| 232 | 231 | sucex | ⊢ suc 𝑛 ∈ V |
| 233 | 232 | sucid | ⊢ suc 𝑛 ∈ suc suc 𝑛 |
| 234 | suceq | ⊢ ( 𝑏 = suc 𝑛 → suc 𝑏 = suc suc 𝑛 ) | |
| 235 | 234 | fveq2d | ⊢ ( 𝑏 = suc 𝑛 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc suc 𝑛 ) ) |
| 236 | fvex | ⊢ ( 𝑓 ‘ suc suc 𝑛 ) ∈ V | |
| 237 | 235 217 236 | fvmpt | ⊢ ( suc 𝑛 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = ( 𝑓 ‘ suc suc 𝑛 ) ) |
| 238 | 233 237 | mp1i | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = ( 𝑓 ‘ suc suc 𝑛 ) ) |
| 239 | simpr2r | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) | |
| 240 | 238 239 | eqtrd | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) |
| 241 | fveq2 | ⊢ ( 𝑎 = suc 𝑐 → ( 𝑓 ‘ 𝑎 ) = ( 𝑓 ‘ suc 𝑐 ) ) | |
| 242 | suceq | ⊢ ( 𝑎 = suc 𝑐 → suc 𝑎 = suc suc 𝑐 ) | |
| 243 | 242 | fveq2d | ⊢ ( 𝑎 = suc 𝑐 → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
| 244 | 241 243 | breq12d | ⊢ ( 𝑎 = suc 𝑐 → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ suc 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc suc 𝑐 ) ) ) |
| 245 | simplr3 | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) | |
| 246 | ordsucelsuc | ⊢ ( Ord suc 𝑛 → ( 𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛 ) ) | |
| 247 | 223 246 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑐 ∈ suc 𝑛 ↔ suc 𝑐 ∈ suc suc 𝑛 ) ) |
| 248 | 247 | biimpa | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → suc 𝑐 ∈ suc suc 𝑛 ) |
| 249 | 244 245 248 | rspcdva | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( 𝑓 ‘ suc 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc suc 𝑐 ) ) |
| 250 | elelsuc | ⊢ ( 𝑐 ∈ suc 𝑛 → 𝑐 ∈ suc suc 𝑛 ) | |
| 251 | suceq | ⊢ ( 𝑏 = 𝑐 → suc 𝑏 = suc 𝑐 ) | |
| 252 | 251 | fveq2d | ⊢ ( 𝑏 = 𝑐 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 253 | fvex | ⊢ ( 𝑓 ‘ suc 𝑐 ) ∈ V | |
| 254 | 252 217 253 | fvmpt | ⊢ ( 𝑐 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 255 | 250 254 | syl | ⊢ ( 𝑐 ∈ suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 256 | 255 | adantl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) = ( 𝑓 ‘ suc 𝑐 ) ) |
| 257 | suceq | ⊢ ( 𝑏 = suc 𝑐 → suc 𝑏 = suc suc 𝑐 ) | |
| 258 | 257 | fveq2d | ⊢ ( 𝑏 = suc 𝑐 → ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
| 259 | fvex | ⊢ ( 𝑓 ‘ suc suc 𝑐 ) ∈ V | |
| 260 | 258 217 259 | fvmpt | ⊢ ( suc 𝑐 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
| 261 | 248 260 | syl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) = ( 𝑓 ‘ suc suc 𝑐 ) ) |
| 262 | 249 256 261 | 3brtr4d | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ∧ 𝑐 ∈ suc 𝑛 ) → ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) |
| 263 | 262 | ralrimiva | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) |
| 264 | 232 | sucex | ⊢ suc suc 𝑛 ∈ V |
| 265 | 264 | mptex | ⊢ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ∈ V |
| 266 | fneq1 | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 Fn suc suc 𝑛 ↔ ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ) ) | |
| 267 | fveq1 | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ ∅ ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) ) | |
| 268 | 267 | eqeq1d | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) ) |
| 269 | fveq1 | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ suc 𝑛 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) ) | |
| 270 | 269 | eqeq1d | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ) |
| 271 | 268 270 | anbi12d | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ) ) |
| 272 | fveq1 | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ 𝑐 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ) | |
| 273 | fveq1 | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( 𝑔 ‘ suc 𝑐 ) = ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) | |
| 274 | 272 273 | breq12d | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) ) |
| 275 | 274 | ralbidv | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) ) |
| 276 | 266 271 275 | 3anbi123d | ⊢ ( 𝑔 = ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) ) ) |
| 277 | 265 276 | spcev | ⊢ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) Fn suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc 𝑛 ↦ ( 𝑓 ‘ suc 𝑏 ) ) ‘ suc 𝑐 ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
| 278 | 219 230 240 263 277 | syl121anc | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) |
| 279 | simpr2l | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) = 𝑦 ) | |
| 280 | 15 | fveq2d | ⊢ ( 𝑎 = ∅ → ( 𝑓 ‘ suc 𝑎 ) = ( 𝑓 ‘ suc ∅ ) ) |
| 281 | 14 280 | breq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) ) |
| 282 | simpr3 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) | |
| 283 | 281 282 225 | rspcdva | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ( 𝑓 ‘ ∅ ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) |
| 284 | 279 283 | eqbrtrrd | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) |
| 285 | eqeq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( 𝑔 ‘ ∅ ) = 𝑧 ↔ ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ) ) | |
| 286 | 285 | anbi1d | ⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ↔ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ) ) |
| 287 | 286 | 3anbi2d | ⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 288 | 287 | exbidv | ⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ) ) |
| 289 | breq2 | ⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ↔ 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) ) | |
| 290 | 288 289 | anbi12d | ⊢ ( 𝑧 = ( 𝑓 ‘ suc ∅ ) → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) ) ) |
| 291 | 228 290 | spcev | ⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = ( 𝑓 ‘ suc ∅ ) ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc ∅ ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) |
| 292 | 278 284 291 | syl2anc | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) |
| 293 | 292 | ex | ⊢ ( 𝑛 ∈ ω → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) ) |
| 294 | 293 | exlimdv | ⊢ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) → ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) ) |
| 295 | fvex | ⊢ ( 𝑔 ‘ ∪ 𝑏 ) ∈ V | |
| 296 | 101 295 | ifex | ⊢ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ∈ V |
| 297 | eqid | ⊢ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) | |
| 298 | 296 297 | fnmpti | ⊢ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 |
| 299 | 298 | a1i | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ) |
| 300 | peano2 | ⊢ ( suc 𝑛 ∈ ω → suc suc 𝑛 ∈ ω ) | |
| 301 | 220 300 | syl | ⊢ ( 𝑛 ∈ ω → suc suc 𝑛 ∈ ω ) |
| 302 | 301 | 3ad2ant1 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → suc suc 𝑛 ∈ ω ) |
| 303 | nnord | ⊢ ( suc suc 𝑛 ∈ ω → Ord suc suc 𝑛 ) | |
| 304 | 302 303 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → Ord suc suc 𝑛 ) |
| 305 | 0elsuc | ⊢ ( Ord suc suc 𝑛 → ∅ ∈ suc suc suc 𝑛 ) | |
| 306 | 304 305 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∅ ∈ suc suc suc 𝑛 ) |
| 307 | iftrue | ⊢ ( 𝑏 = ∅ → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = 𝑦 ) | |
| 308 | 307 297 101 | fvmpt | ⊢ ( ∅ ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ) |
| 309 | 306 308 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ) |
| 310 | 264 | sucid | ⊢ suc suc 𝑛 ∈ suc suc suc 𝑛 |
| 311 | eqeq1 | ⊢ ( 𝑏 = suc suc 𝑛 → ( 𝑏 = ∅ ↔ suc suc 𝑛 = ∅ ) ) | |
| 312 | unieq | ⊢ ( 𝑏 = suc suc 𝑛 → ∪ 𝑏 = ∪ suc suc 𝑛 ) | |
| 313 | 312 | fveq2d | ⊢ ( 𝑏 = suc suc 𝑛 → ( 𝑔 ‘ ∪ 𝑏 ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
| 314 | 311 313 | ifbieq2d | ⊢ ( 𝑏 = suc suc 𝑛 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = if ( suc suc 𝑛 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) ) |
| 315 | nsuceq0 | ⊢ suc suc 𝑛 ≠ ∅ | |
| 316 | 315 | neii | ⊢ ¬ suc suc 𝑛 = ∅ |
| 317 | 316 | iffalsei | ⊢ if ( suc suc 𝑛 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) |
| 318 | 314 317 | eqtrdi | ⊢ ( 𝑏 = suc suc 𝑛 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
| 319 | fvex | ⊢ ( 𝑔 ‘ ∪ suc suc 𝑛 ) ∈ V | |
| 320 | 318 297 319 | fvmpt | ⊢ ( suc suc 𝑛 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
| 321 | 310 320 | mp1i | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = ( 𝑔 ‘ ∪ suc suc 𝑛 ) ) |
| 322 | 220 | 3ad2ant1 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → suc 𝑛 ∈ ω ) |
| 323 | 322 222 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → Ord suc 𝑛 ) |
| 324 | ordunisuc | ⊢ ( Ord suc 𝑛 → ∪ suc suc 𝑛 = suc 𝑛 ) | |
| 325 | 323 324 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∪ suc suc 𝑛 = suc 𝑛 ) |
| 326 | 325 | fveq2d | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑔 ‘ ∪ suc suc 𝑛 ) = ( 𝑔 ‘ suc 𝑛 ) ) |
| 327 | simp22r | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) | |
| 328 | 321 326 327 | 3eqtrd | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) |
| 329 | simpl3 | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) | |
| 330 | iftrue | ⊢ ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = 𝑦 ) | |
| 331 | 330 | adantl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = 𝑦 ) |
| 332 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑔 ‘ 𝑎 ) = ( 𝑔 ‘ ∅ ) ) | |
| 333 | simp22l | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑔 ‘ ∅ ) = 𝑧 ) | |
| 334 | 332 333 | sylan9eqr | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → ( 𝑔 ‘ 𝑎 ) = 𝑧 ) |
| 335 | 329 331 334 | 3brtr4d | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 = ∅ ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) |
| 336 | 335 | ex | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
| 337 | 336 | adantr | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = ∅ → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
| 338 | ordsucelsuc | ⊢ ( Ord suc 𝑛 → ( 𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) ) | |
| 339 | 323 338 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) ) |
| 340 | elnn | ⊢ ( ( 𝑏 ∈ suc 𝑛 ∧ suc 𝑛 ∈ ω ) → 𝑏 ∈ ω ) | |
| 341 | 322 340 | sylan2 | ⊢ ( ( 𝑏 ∈ suc 𝑛 ∧ ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) → 𝑏 ∈ ω ) |
| 342 | 341 | ancoms | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → 𝑏 ∈ ω ) |
| 343 | nnord | ⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) | |
| 344 | 342 343 | syl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → Ord 𝑏 ) |
| 345 | ordunisuc | ⊢ ( Ord 𝑏 → ∪ suc 𝑏 = 𝑏 ) | |
| 346 | 344 345 | syl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ∪ suc 𝑏 = 𝑏 ) |
| 347 | 346 | fveq2d | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) = ( 𝑔 ‘ 𝑏 ) ) |
| 348 | simp23 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) | |
| 349 | fveq2 | ⊢ ( 𝑐 = 𝑏 → ( 𝑔 ‘ 𝑐 ) = ( 𝑔 ‘ 𝑏 ) ) | |
| 350 | suceq | ⊢ ( 𝑐 = 𝑏 → suc 𝑐 = suc 𝑏 ) | |
| 351 | 350 | fveq2d | ⊢ ( 𝑐 = 𝑏 → ( 𝑔 ‘ suc 𝑐 ) = ( 𝑔 ‘ suc 𝑏 ) ) |
| 352 | 349 351 | breq12d | ⊢ ( 𝑐 = 𝑏 → ( ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ↔ ( 𝑔 ‘ 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 353 | 352 | rspcv | ⊢ ( 𝑏 ∈ suc 𝑛 → ( ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) → ( 𝑔 ‘ 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 354 | 348 353 | mpan9 | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 ‘ 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) |
| 355 | 347 354 | eqbrtrd | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑏 ∈ suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) |
| 356 | 355 | ex | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑏 ∈ suc 𝑛 → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 357 | 339 356 | sylbird | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( suc 𝑏 ∈ suc suc 𝑛 → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 358 | 357 | imp | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) |
| 359 | eleq1 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑏 ∈ suc suc 𝑛 ) ) | |
| 360 | 359 | anbi2d | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) ↔ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) ) ) |
| 361 | eqeq1 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑎 = ∅ ↔ suc 𝑏 = ∅ ) ) | |
| 362 | unieq | ⊢ ( 𝑎 = suc 𝑏 → ∪ 𝑎 = ∪ suc 𝑏 ) | |
| 363 | 362 | fveq2d | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑔 ‘ ∪ 𝑎 ) = ( 𝑔 ‘ ∪ suc 𝑏 ) ) |
| 364 | 361 363 | ifbieq2d | ⊢ ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = if ( suc 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑏 ) ) ) |
| 365 | nsuceq0 | ⊢ suc 𝑏 ≠ ∅ | |
| 366 | 365 | neii | ⊢ ¬ suc 𝑏 = ∅ |
| 367 | 366 | iffalsei | ⊢ if ( suc 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑏 ) ) = ( 𝑔 ‘ ∪ suc 𝑏 ) |
| 368 | 364 367 | eqtrdi | ⊢ ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) = ( 𝑔 ‘ ∪ suc 𝑏 ) ) |
| 369 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑔 ‘ 𝑎 ) = ( 𝑔 ‘ suc 𝑏 ) ) | |
| 370 | 368 369 | breq12d | ⊢ ( 𝑎 = suc 𝑏 → ( if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ↔ ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) |
| 371 | 360 370 | imbi12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ↔ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ suc 𝑏 ∈ suc suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑏 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑏 ) ) ) ) |
| 372 | 358 371 | mpbiri | ⊢ ( 𝑎 = suc 𝑏 → ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
| 373 | 372 | com12 | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
| 374 | 373 | rexlimdvw | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) ) |
| 375 | elnn | ⊢ ( ( 𝑎 ∈ suc suc 𝑛 ∧ suc suc 𝑛 ∈ ω ) → 𝑎 ∈ ω ) | |
| 376 | 375 | ancoms | ⊢ ( ( suc suc 𝑛 ∈ ω ∧ 𝑎 ∈ suc suc 𝑛 ) → 𝑎 ∈ ω ) |
| 377 | 302 376 | sylan | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → 𝑎 ∈ ω ) |
| 378 | nn0suc | ⊢ ( 𝑎 ∈ ω → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) ) | |
| 379 | 377 378 | syl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑎 = ∅ ∨ ∃ 𝑏 ∈ ω 𝑎 = suc 𝑏 ) ) |
| 380 | 337 374 379 | mpjaod | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ 𝑎 ) ) |
| 381 | elelsuc | ⊢ ( 𝑎 ∈ suc suc 𝑛 → 𝑎 ∈ suc suc suc 𝑛 ) | |
| 382 | eqeq1 | ⊢ ( 𝑏 = 𝑎 → ( 𝑏 = ∅ ↔ 𝑎 = ∅ ) ) | |
| 383 | unieq | ⊢ ( 𝑏 = 𝑎 → ∪ 𝑏 = ∪ 𝑎 ) | |
| 384 | 383 | fveq2d | ⊢ ( 𝑏 = 𝑎 → ( 𝑔 ‘ ∪ 𝑏 ) = ( 𝑔 ‘ ∪ 𝑎 ) ) |
| 385 | 382 384 | ifbieq2d | ⊢ ( 𝑏 = 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
| 386 | fvex | ⊢ ( 𝑔 ‘ ∪ 𝑎 ) ∈ V | |
| 387 | 101 386 | ifex | ⊢ if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ∈ V |
| 388 | 385 297 387 | fvmpt | ⊢ ( 𝑎 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
| 389 | 381 388 | syl | ⊢ ( 𝑎 ∈ suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
| 390 | 389 | adantl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) = if ( 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑎 ) ) ) |
| 391 | ordsucelsuc | ⊢ ( Ord suc suc 𝑛 → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛 ) ) | |
| 392 | 304 391 | syl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ( 𝑎 ∈ suc suc 𝑛 ↔ suc 𝑎 ∈ suc suc suc 𝑛 ) ) |
| 393 | 392 | biimpa | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → suc 𝑎 ∈ suc suc suc 𝑛 ) |
| 394 | eqeq1 | ⊢ ( 𝑏 = suc 𝑎 → ( 𝑏 = ∅ ↔ suc 𝑎 = ∅ ) ) | |
| 395 | unieq | ⊢ ( 𝑏 = suc 𝑎 → ∪ 𝑏 = ∪ suc 𝑎 ) | |
| 396 | 395 | fveq2d | ⊢ ( 𝑏 = suc 𝑎 → ( 𝑔 ‘ ∪ 𝑏 ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
| 397 | 394 396 | ifbieq2d | ⊢ ( 𝑏 = suc 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = if ( suc 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑎 ) ) ) |
| 398 | nsuceq0 | ⊢ suc 𝑎 ≠ ∅ | |
| 399 | 398 | neii | ⊢ ¬ suc 𝑎 = ∅ |
| 400 | 399 | iffalsei | ⊢ if ( suc 𝑎 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ suc 𝑎 ) ) = ( 𝑔 ‘ ∪ suc 𝑎 ) |
| 401 | 397 400 | eqtrdi | ⊢ ( 𝑏 = suc 𝑎 → if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
| 402 | fvex | ⊢ ( 𝑔 ‘ ∪ suc 𝑎 ) ∈ V | |
| 403 | 401 297 402 | fvmpt | ⊢ ( suc 𝑎 ∈ suc suc suc 𝑛 → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
| 404 | 393 403 | syl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 ‘ ∪ suc 𝑎 ) ) |
| 405 | nnord | ⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) | |
| 406 | 377 405 | syl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → Ord 𝑎 ) |
| 407 | ordunisuc | ⊢ ( Ord 𝑎 → ∪ suc 𝑎 = 𝑎 ) | |
| 408 | 406 407 | syl | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ∪ suc 𝑎 = 𝑎 ) |
| 409 | 408 | fveq2d | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( 𝑔 ‘ ∪ suc 𝑎 ) = ( 𝑔 ‘ 𝑎 ) ) |
| 410 | 404 409 | eqtrd | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) = ( 𝑔 ‘ 𝑎 ) ) |
| 411 | 380 390 410 | 3brtr4d | ⊢ ( ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ∧ 𝑎 ∈ suc suc 𝑛 ) → ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) |
| 412 | 411 | ralrimiva | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) |
| 413 | 264 | sucex | ⊢ suc suc suc 𝑛 ∈ V |
| 414 | 413 | mptex | ⊢ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ∈ V |
| 415 | fneq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 Fn suc suc suc 𝑛 ↔ ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ) ) | |
| 416 | fveq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ ∅ ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) ) | |
| 417 | 416 | eqeq1d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ) ) |
| 418 | fveq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ suc suc 𝑛 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) ) | |
| 419 | 418 | eqeq1d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ) |
| 420 | 417 419 | anbi12d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ↔ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ) ) |
| 421 | fveq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ 𝑎 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ) | |
| 422 | fveq1 | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( 𝑓 ‘ suc 𝑎 ) = ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) | |
| 423 | 421 422 | breq12d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) ) |
| 424 | 423 | ralbidv | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ↔ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) ) |
| 425 | 415 420 424 | 3anbi123d | ⊢ ( 𝑓 = ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) → ( ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) ) ) |
| 426 | 414 425 | spcev | ⊢ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) Fn suc suc suc 𝑛 ∧ ( ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ ∅ ) = 𝑦 ∧ ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( ( 𝑏 ∈ suc suc suc 𝑛 ↦ if ( 𝑏 = ∅ , 𝑦 , ( 𝑔 ‘ ∪ 𝑏 ) ) ) ‘ suc 𝑎 ) ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 427 | 299 309 328 412 426 | syl121anc | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 428 | 427 | 3exp | ⊢ ( 𝑛 ∈ ω → ( ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) ) |
| 429 | 428 | exlimdv | ⊢ ( 𝑛 ∈ ω → ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) → ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) ) |
| 430 | 429 | impd | ⊢ ( 𝑛 ∈ ω → ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 431 | 430 | exlimdv | ⊢ ( 𝑛 ∈ ω → ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) → ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ) ) |
| 432 | 294 431 | impbid | ⊢ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ) ) |
| 433 | vex | ⊢ 𝑧 ∈ V | |
| 434 | 433 | brresi | ⊢ ( 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) |
| 435 | 434 | anbi2i | ⊢ ( ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ↔ ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 436 | 435 | exbii | ⊢ ( ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ 𝑦 ( 𝑅 ↾ 𝐴 ) 𝑧 ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 437 | 432 436 | bitrdi | ⊢ ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑥 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 438 | 215 437 | vtoclg | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑛 ∈ ω → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) ) |
| 439 | 438 | impcom | ⊢ ( ( 𝑛 ∈ ω ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 440 | 439 | adantrl | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 441 | 440 | 3adant3 | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ ∃ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) ) |
| 442 | 175 203 441 | 3bitr4rd | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) |
| 443 | 442 | alrimiv | ⊢ ( ( 𝑛 ∈ ω ∧ ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) ∧ ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) |
| 444 | 443 | 3exp | ⊢ ( 𝑛 ∈ ω → ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) ) |
| 445 | 444 | a2d | ⊢ ( 𝑛 ∈ ω → ( ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑧 ( ∃ 𝑔 ( 𝑔 Fn suc suc 𝑛 ∧ ( ( 𝑔 ‘ ∅ ) = 𝑧 ∧ ( 𝑔 ‘ suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑐 ∈ suc 𝑛 ( 𝑔 ‘ 𝑐 ) ( 𝑅 ↾ 𝐴 ) ( 𝑔 ‘ suc 𝑐 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ 𝑛 ) ) ) → ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc suc 𝑛 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc suc 𝑛 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ suc 𝑛 ) ) ) ) ) |
| 446 | 27 68 82 96 164 445 | finds | ⊢ ( 𝑁 ∈ ω → ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) ) |
| 447 | 446 | 3impib | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ∀ 𝑦 ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |
| 448 | 447 | 19.21bi | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → ( ∃ 𝑓 ( 𝑓 Fn suc suc 𝑁 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ suc 𝑁 ) = 𝑋 ) ∧ ∀ 𝑎 ∈ suc 𝑁 ( 𝑓 ‘ 𝑎 ) ( 𝑅 ↾ 𝐴 ) ( 𝑓 ‘ suc 𝑎 ) ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑁 ) ) ) |