This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula-building rule for universal quantifier (deduction form). See also albidh and albid . (Contributed by NM, 26-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | albidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | albidv | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albidv.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | ax-5 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 3 | 2 1 | albidh | ⊢ ( 𝜑 → ( ∀ 𝑥 𝜓 ↔ ∀ 𝑥 𝜒 ) ) |