This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunisuc | ⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeleqon | ⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) | |
| 2 | suceq | ⊢ ( 𝑥 = 𝐴 → suc 𝑥 = suc 𝐴 ) | |
| 3 | 2 | unieqd | ⊢ ( 𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴 ) |
| 4 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 5 | 3 4 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴 ) ) |
| 6 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 7 | ordtr | ⊢ ( Ord 𝑥 → Tr 𝑥 ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑥 ∈ On → Tr 𝑥 ) |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | 9 | unisuc | ⊢ ( Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥 ) |
| 11 | 8 10 | sylib | ⊢ ( 𝑥 ∈ On → ∪ suc 𝑥 = 𝑥 ) |
| 12 | 5 11 | vtoclga | ⊢ ( 𝐴 ∈ On → ∪ suc 𝐴 = 𝐴 ) |
| 13 | sucon | ⊢ suc On = On | |
| 14 | 13 | unieqi | ⊢ ∪ suc On = ∪ On |
| 15 | unon | ⊢ ∪ On = On | |
| 16 | 14 15 | eqtri | ⊢ ∪ suc On = On |
| 17 | suceq | ⊢ ( 𝐴 = On → suc 𝐴 = suc On ) | |
| 18 | 17 | unieqd | ⊢ ( 𝐴 = On → ∪ suc 𝐴 = ∪ suc On ) |
| 19 | id | ⊢ ( 𝐴 = On → 𝐴 = On ) | |
| 20 | 16 18 19 | 3eqtr4a | ⊢ ( 𝐴 = On → ∪ suc 𝐴 = 𝐴 ) |
| 21 | 12 20 | jaoi | ⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ∪ suc 𝐴 = 𝐴 ) |
| 22 | 1 21 | sylbi | ⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |