This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If R is set-like in A , then all predecessor classes of elements of A exist. (Contributed by Scott Fenton, 20-Feb-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setlikespec | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑋 ) } | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpred | ⊢ ( 𝑋 ∈ 𝐴 → ( 𝑥 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑋 ) ) ) |
| 4 | 3 | eqabdv | ⊢ ( 𝑋 ∈ 𝐴 → Pred ( 𝑅 , 𝐴 , 𝑋 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑥 𝑅 𝑋 ) } ) |
| 5 | 1 4 | eqtr4id | ⊢ ( 𝑋 ∈ 𝐴 → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 7 | seex | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑋 ∈ 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } ∈ V ) | |
| 8 | 7 | ancoms | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑋 } ∈ V ) |
| 9 | 6 8 | eqeltrrd | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑅 Se 𝐴 ) → Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V ) |