This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfrdg.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| nfrdg.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
| Assertion | nfrdg | ⊢ Ⅎ 𝑥 rec ( 𝐹 , 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfrdg.1 | ⊢ Ⅎ 𝑥 𝐹 | |
| 2 | nfrdg.2 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | df-rdg | ⊢ rec ( 𝐹 , 𝐴 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 V | |
| 5 | nfv | ⊢ Ⅎ 𝑥 𝑔 = ∅ | |
| 6 | nfv | ⊢ Ⅎ 𝑥 Lim dom 𝑔 | |
| 7 | nfcv | ⊢ Ⅎ 𝑥 ∪ ran 𝑔 | |
| 8 | nfcv | ⊢ Ⅎ 𝑥 ( 𝑔 ‘ ∪ dom 𝑔 ) | |
| 9 | 1 8 | nffv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) |
| 10 | 6 7 9 | nfif | ⊢ Ⅎ 𝑥 if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) |
| 11 | 5 2 10 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) |
| 12 | 4 11 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) |
| 13 | 12 | nfrecs | ⊢ Ⅎ 𝑥 recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝐴 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
| 14 | 3 13 | nfcxfr | ⊢ Ⅎ 𝑥 rec ( 𝐹 , 𝐴 ) |