This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttrclse . Show that a suc N element long chain gives membership in the N -th predecessor class and vice-versa. (Contributed by Scott Fenton, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ttrclselem.1 | |- F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
|
| Assertion | ttrclselem2 | |- ( ( N e. _om /\ R Se A /\ X e. A ) -> ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttrclselem.1 | |- F = rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
|
| 2 | suceq | |- ( m = (/) -> suc m = suc (/) ) |
|
| 3 | df-1o | |- 1o = suc (/) |
|
| 4 | 2 3 | eqtr4di | |- ( m = (/) -> suc m = 1o ) |
| 5 | suceq | |- ( suc m = 1o -> suc suc m = suc 1o ) |
|
| 6 | 4 5 | syl | |- ( m = (/) -> suc suc m = suc 1o ) |
| 7 | 6 | fneq2d | |- ( m = (/) -> ( f Fn suc suc m <-> f Fn suc 1o ) ) |
| 8 | 4 | fveqeq2d | |- ( m = (/) -> ( ( f ` suc m ) = X <-> ( f ` 1o ) = X ) ) |
| 9 | 8 | anbi2d | |- ( m = (/) -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
| 10 | df1o2 | |- 1o = { (/) } |
|
| 11 | 4 10 | eqtrdi | |- ( m = (/) -> suc m = { (/) } ) |
| 12 | 11 | raleqdv | |- ( m = (/) -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. { (/) } ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
| 13 | 0ex | |- (/) e. _V |
|
| 14 | fveq2 | |- ( a = (/) -> ( f ` a ) = ( f ` (/) ) ) |
|
| 15 | suceq | |- ( a = (/) -> suc a = suc (/) ) |
|
| 16 | 15 3 | eqtr4di | |- ( a = (/) -> suc a = 1o ) |
| 17 | 16 | fveq2d | |- ( a = (/) -> ( f ` suc a ) = ( f ` 1o ) ) |
| 18 | 14 17 | breq12d | |- ( a = (/) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) |
| 19 | 13 18 | ralsn | |- ( A. a e. { (/) } ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) |
| 20 | 12 19 | bitrdi | |- ( m = (/) -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) |
| 21 | 7 9 20 | 3anbi123d | |- ( m = (/) -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) ) |
| 22 | 21 | exbidv | |- ( m = (/) -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) ) |
| 23 | fveq2 | |- ( m = (/) -> ( F ` m ) = ( F ` (/) ) ) |
|
| 24 | 23 | eleq2d | |- ( m = (/) -> ( y e. ( F ` m ) <-> y e. ( F ` (/) ) ) ) |
| 25 | 22 24 | bibi12d | |- ( m = (/) -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) |
| 26 | 25 | albidv | |- ( m = (/) -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) |
| 27 | 26 | imbi2d | |- ( m = (/) -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) ) ) |
| 28 | suceq | |- ( m = n -> suc m = suc n ) |
|
| 29 | suceq | |- ( suc m = suc n -> suc suc m = suc suc n ) |
|
| 30 | 28 29 | syl | |- ( m = n -> suc suc m = suc suc n ) |
| 31 | 30 | fneq2d | |- ( m = n -> ( f Fn suc suc m <-> f Fn suc suc n ) ) |
| 32 | 28 | fveqeq2d | |- ( m = n -> ( ( f ` suc m ) = X <-> ( f ` suc n ) = X ) ) |
| 33 | 32 | anbi2d | |- ( m = n -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) ) ) |
| 34 | 28 | raleqdv | |- ( m = n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
| 35 | fveq2 | |- ( a = c -> ( f ` a ) = ( f ` c ) ) |
|
| 36 | suceq | |- ( a = c -> suc a = suc c ) |
|
| 37 | 36 | fveq2d | |- ( a = c -> ( f ` suc a ) = ( f ` suc c ) ) |
| 38 | 35 37 | breq12d | |- ( a = c -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) |
| 39 | 38 | cbvralvw | |- ( A. a e. suc n ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) |
| 40 | 34 39 | bitrdi | |- ( m = n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) |
| 41 | 31 33 40 | 3anbi123d | |- ( m = n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) ) |
| 42 | 41 | exbidv | |- ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) ) ) |
| 43 | fneq1 | |- ( f = g -> ( f Fn suc suc n <-> g Fn suc suc n ) ) |
|
| 44 | fveq1 | |- ( f = g -> ( f ` (/) ) = ( g ` (/) ) ) |
|
| 45 | 44 | eqeq1d | |- ( f = g -> ( ( f ` (/) ) = y <-> ( g ` (/) ) = y ) ) |
| 46 | fveq1 | |- ( f = g -> ( f ` suc n ) = ( g ` suc n ) ) |
|
| 47 | 46 | eqeq1d | |- ( f = g -> ( ( f ` suc n ) = X <-> ( g ` suc n ) = X ) ) |
| 48 | 45 47 | anbi12d | |- ( f = g -> ( ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) <-> ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) ) ) |
| 49 | fveq1 | |- ( f = g -> ( f ` c ) = ( g ` c ) ) |
|
| 50 | fveq1 | |- ( f = g -> ( f ` suc c ) = ( g ` suc c ) ) |
|
| 51 | 49 50 | breq12d | |- ( f = g -> ( ( f ` c ) ( R |` A ) ( f ` suc c ) <-> ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
| 52 | 51 | ralbidv | |- ( f = g -> ( A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) <-> A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
| 53 | 43 48 52 | 3anbi123d | |- ( f = g -> ( ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 54 | 53 | cbvexvw | |- ( E. f ( f Fn suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc n ) = X ) /\ A. c e. suc n ( f ` c ) ( R |` A ) ( f ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
| 55 | 42 54 | bitrdi | |- ( m = n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 56 | fveq2 | |- ( m = n -> ( F ` m ) = ( F ` n ) ) |
|
| 57 | 56 | eleq2d | |- ( m = n -> ( y e. ( F ` m ) <-> y e. ( F ` n ) ) ) |
| 58 | 55 57 | bibi12d | |- ( m = n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) ) ) |
| 59 | 58 | albidv | |- ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) ) ) |
| 60 | eqeq2 | |- ( y = z -> ( ( g ` (/) ) = y <-> ( g ` (/) ) = z ) ) |
|
| 61 | 60 | anbi1d | |- ( y = z -> ( ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) <-> ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) ) ) |
| 62 | 61 | 3anbi2d | |- ( y = z -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 63 | 62 | exbidv | |- ( y = z -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 64 | eleq1 | |- ( y = z -> ( y e. ( F ` n ) <-> z e. ( F ` n ) ) ) |
|
| 65 | 63 64 | bibi12d | |- ( y = z -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) |
| 66 | 65 | cbvalvw | |- ( A. y ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = y /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> y e. ( F ` n ) ) <-> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) |
| 67 | 59 66 | bitrdi | |- ( m = n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) |
| 68 | 67 | imbi2d | |- ( m = n -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) ) ) |
| 69 | suceq | |- ( m = suc n -> suc m = suc suc n ) |
|
| 70 | suceq | |- ( suc m = suc suc n -> suc suc m = suc suc suc n ) |
|
| 71 | 69 70 | syl | |- ( m = suc n -> suc suc m = suc suc suc n ) |
| 72 | 71 | fneq2d | |- ( m = suc n -> ( f Fn suc suc m <-> f Fn suc suc suc n ) ) |
| 73 | 69 | fveqeq2d | |- ( m = suc n -> ( ( f ` suc m ) = X <-> ( f ` suc suc n ) = X ) ) |
| 74 | 73 | anbi2d | |- ( m = suc n -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) ) ) |
| 75 | 69 | raleqdv | |- ( m = suc n -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
| 76 | 72 74 75 | 3anbi123d | |- ( m = suc n -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 77 | 76 | exbidv | |- ( m = suc n -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 78 | fveq2 | |- ( m = suc n -> ( F ` m ) = ( F ` suc n ) ) |
|
| 79 | 78 | eleq2d | |- ( m = suc n -> ( y e. ( F ` m ) <-> y e. ( F ` suc n ) ) ) |
| 80 | 77 79 | bibi12d | |- ( m = suc n -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) |
| 81 | 80 | albidv | |- ( m = suc n -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) |
| 82 | 81 | imbi2d | |- ( m = suc n -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) |
| 83 | suceq | |- ( m = N -> suc m = suc N ) |
|
| 84 | suceq | |- ( suc m = suc N -> suc suc m = suc suc N ) |
|
| 85 | 83 84 | syl | |- ( m = N -> suc suc m = suc suc N ) |
| 86 | 85 | fneq2d | |- ( m = N -> ( f Fn suc suc m <-> f Fn suc suc N ) ) |
| 87 | 83 | fveqeq2d | |- ( m = N -> ( ( f ` suc m ) = X <-> ( f ` suc N ) = X ) ) |
| 88 | 87 | anbi2d | |- ( m = N -> ( ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) <-> ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) ) ) |
| 89 | 83 | raleqdv | |- ( m = N -> ( A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
| 90 | 86 88 89 | 3anbi123d | |- ( m = N -> ( ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 91 | 90 | exbidv | |- ( m = N -> ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 92 | fveq2 | |- ( m = N -> ( F ` m ) = ( F ` N ) ) |
|
| 93 | 92 | eleq2d | |- ( m = N -> ( y e. ( F ` m ) <-> y e. ( F ` N ) ) ) |
| 94 | 91 93 | bibi12d | |- ( m = N -> ( ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) |
| 95 | 94 | albidv | |- ( m = N -> ( A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) <-> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) |
| 96 | 95 | imbi2d | |- ( m = N -> ( ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc m /\ ( ( f ` (/) ) = y /\ ( f ` suc m ) = X ) /\ A. a e. suc m ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` m ) ) ) <-> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) ) |
| 97 | eqeq2 | |- ( x = X -> ( ( f ` 1o ) = x <-> ( f ` 1o ) = X ) ) |
|
| 98 | 97 | anbi2d | |- ( x = X -> ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) <-> ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
| 99 | 98 | anbi2d | |- ( x = X -> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) ) |
| 100 | 99 | exbidv | |- ( x = X -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) ) |
| 101 | vex | |- y e. _V |
|
| 102 | vex | |- x e. _V |
|
| 103 | 101 102 | ifex | |- if ( b = (/) , y , x ) e. _V |
| 104 | eqid | |- ( b e. suc 1o |-> if ( b = (/) , y , x ) ) = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) |
|
| 105 | 103 104 | fnmpti | |- ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o |
| 106 | equid | |- y = y |
|
| 107 | equid | |- x = x |
|
| 108 | 106 107 | pm3.2i | |- ( y = y /\ x = x ) |
| 109 | 1oex | |- 1o e. _V |
|
| 110 | 109 | sucex | |- suc 1o e. _V |
| 111 | 110 | mptex | |- ( b e. suc 1o |-> if ( b = (/) , y , x ) ) e. _V |
| 112 | fneq1 | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f Fn suc 1o <-> ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o ) ) |
|
| 113 | fveq1 | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` (/) ) = ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) ) |
|
| 114 | 1on | |- 1o e. On |
|
| 115 | 114 | onordi | |- Ord 1o |
| 116 | 0elsuc | |- ( Ord 1o -> (/) e. suc 1o ) |
|
| 117 | iftrue | |- ( b = (/) -> if ( b = (/) , y , x ) = y ) |
|
| 118 | 117 104 101 | fvmpt | |- ( (/) e. suc 1o -> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) = y ) |
| 119 | 115 116 118 | mp2b | |- ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` (/) ) = y |
| 120 | 113 119 | eqtrdi | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` (/) ) = y ) |
| 121 | 120 | eqeq1d | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f ` (/) ) = y <-> y = y ) ) |
| 122 | fveq1 | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` 1o ) = ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) ) |
|
| 123 | 109 | sucid | |- 1o e. suc 1o |
| 124 | eqeq1 | |- ( b = 1o -> ( b = (/) <-> 1o = (/) ) ) |
|
| 125 | 124 | ifbid | |- ( b = 1o -> if ( b = (/) , y , x ) = if ( 1o = (/) , y , x ) ) |
| 126 | 1n0 | |- 1o =/= (/) |
|
| 127 | 126 | neii | |- -. 1o = (/) |
| 128 | 127 | iffalsei | |- if ( 1o = (/) , y , x ) = x |
| 129 | 125 128 | eqtrdi | |- ( b = 1o -> if ( b = (/) , y , x ) = x ) |
| 130 | 129 104 102 | fvmpt | |- ( 1o e. suc 1o -> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) = x ) |
| 131 | 123 130 | ax-mp | |- ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) ` 1o ) = x |
| 132 | 122 131 | eqtrdi | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( f ` 1o ) = x ) |
| 133 | 132 | eqeq1d | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f ` 1o ) = x <-> x = x ) ) |
| 134 | 121 133 | anbi12d | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) <-> ( y = y /\ x = x ) ) ) |
| 135 | 112 134 | anbi12d | |- ( f = ( b e. suc 1o |-> if ( b = (/) , y , x ) ) -> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) <-> ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o /\ ( y = y /\ x = x ) ) ) ) |
| 136 | 111 135 | spcev | |- ( ( ( b e. suc 1o |-> if ( b = (/) , y , x ) ) Fn suc 1o /\ ( y = y /\ x = x ) ) -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) ) |
| 137 | 105 108 136 | mp2an | |- E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = x ) ) |
| 138 | 100 137 | vtoclg | |- ( X e. A -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
| 139 | 138 | adantl | |- ( ( R Se A /\ X e. A ) -> E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) ) |
| 140 | 139 | biantrurd | |- ( ( R Se A /\ X e. A ) -> ( ( y e. A /\ y R X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( y e. A /\ y R X ) ) ) ) |
| 141 | 101 | elpred | |- ( X e. A -> ( y e. Pred ( R , A , X ) <-> ( y e. A /\ y R X ) ) ) |
| 142 | 141 | adantl | |- ( ( R Se A /\ X e. A ) -> ( y e. Pred ( R , A , X ) <-> ( y e. A /\ y R X ) ) ) |
| 143 | brres | |- ( X e. A -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) |
|
| 144 | 143 | adantl | |- ( ( R Se A /\ X e. A ) -> ( y ( R |` A ) X <-> ( y e. A /\ y R X ) ) ) |
| 145 | 144 | anbi2d | |- ( ( R Se A /\ X e. A ) -> ( ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( y e. A /\ y R X ) ) ) ) |
| 146 | 140 142 145 | 3bitr4rd | |- ( ( R Se A /\ X e. A ) -> ( ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> y e. Pred ( R , A , X ) ) ) |
| 147 | df-3an | |- ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) ) |
|
| 148 | breq12 | |- ( ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) -> ( ( f ` (/) ) ( R |` A ) ( f ` 1o ) <-> y ( R |` A ) X ) ) |
|
| 149 | 148 | adantl | |- ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) -> ( ( f ` (/) ) ( R |` A ) ( f ` 1o ) <-> y ( R |` A ) X ) ) |
| 150 | 149 | pm5.32i | |- ( ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
| 151 | 147 150 | bitri | |- ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
| 152 | 151 | exbii | |- ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> E. f ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
| 153 | 19.41v | |- ( E. f ( ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
|
| 154 | 152 153 | bitri | |- ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) |
| 155 | 154 | a1i | |- ( ( R Se A /\ X e. A ) -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) ) /\ y ( R |` A ) X ) ) ) |
| 156 | 1 | fveq1i | |- ( F ` (/) ) = ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) |
| 157 | setlikespec | |- ( ( X e. A /\ R Se A ) -> Pred ( R , A , X ) e. _V ) |
|
| 158 | 157 | ancoms | |- ( ( R Se A /\ X e. A ) -> Pred ( R , A , X ) e. _V ) |
| 159 | rdg0g | |- ( Pred ( R , A , X ) e. _V -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) |
|
| 160 | 158 159 | syl | |- ( ( R Se A /\ X e. A ) -> ( rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) ` (/) ) = Pred ( R , A , X ) ) |
| 161 | 156 160 | eqtrid | |- ( ( R Se A /\ X e. A ) -> ( F ` (/) ) = Pred ( R , A , X ) ) |
| 162 | 161 | eleq2d | |- ( ( R Se A /\ X e. A ) -> ( y e. ( F ` (/) ) <-> y e. Pred ( R , A , X ) ) ) |
| 163 | 146 155 162 | 3bitr4d | |- ( ( R Se A /\ X e. A ) -> ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) |
| 164 | 163 | alrimiv | |- ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc 1o /\ ( ( f ` (/) ) = y /\ ( f ` 1o ) = X ) /\ ( f ` (/) ) ( R |` A ) ( f ` 1o ) ) <-> y e. ( F ` (/) ) ) ) |
| 165 | eliun | |- ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z e. ( F ` n ) y e. Pred ( R , A , z ) ) |
|
| 166 | df-rex | |- ( E. z e. ( F ` n ) y e. Pred ( R , A , z ) <-> E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) ) |
|
| 167 | 165 166 | bitri | |- ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) ) |
| 168 | 101 | elpred | |- ( z e. _V -> ( y e. Pred ( R , A , z ) <-> ( y e. A /\ y R z ) ) ) |
| 169 | 168 | elv | |- ( y e. Pred ( R , A , z ) <-> ( y e. A /\ y R z ) ) |
| 170 | 169 | anbi2i | |- ( ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> ( z e. ( F ` n ) /\ ( y e. A /\ y R z ) ) ) |
| 171 | anbi1 | |- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> ( z e. ( F ` n ) /\ ( y e. A /\ y R z ) ) ) ) |
|
| 172 | 170 171 | bitr4id | |- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 173 | 172 | alexbii | |- ( A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> ( E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 174 | 173 | 3ad2ant3 | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. z ( z e. ( F ` n ) /\ y e. Pred ( R , A , z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 175 | 167 174 | bitrid | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( y e. U_ z e. ( F ` n ) Pred ( R , A , z ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 176 | nnon | |- ( n e. _om -> n e. On ) |
|
| 177 | fvex | |- ( F ` n ) e. _V |
|
| 178 | 1 | ttrclselem1 | |- ( n e. _om -> ( F ` n ) C_ A ) |
| 179 | 178 | adantr | |- ( ( n e. _om /\ R Se A ) -> ( F ` n ) C_ A ) |
| 180 | dfse3 | |- ( R Se A <-> A. z e. A Pred ( R , A , z ) e. _V ) |
|
| 181 | 180 | biimpi | |- ( R Se A -> A. z e. A Pred ( R , A , z ) e. _V ) |
| 182 | 181 | adantl | |- ( ( n e. _om /\ R Se A ) -> A. z e. A Pred ( R , A , z ) e. _V ) |
| 183 | ssralv | |- ( ( F ` n ) C_ A -> ( A. z e. A Pred ( R , A , z ) e. _V -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) ) |
|
| 184 | 179 182 183 | sylc | |- ( ( n e. _om /\ R Se A ) -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
| 185 | 184 | adantrr | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
| 186 | iunexg | |- ( ( ( F ` n ) e. _V /\ A. z e. ( F ` n ) Pred ( R , A , z ) e. _V ) -> U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
|
| 187 | 177 185 186 | sylancr | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) |
| 188 | nfcv | |- F/_ b Pred ( R , A , X ) |
|
| 189 | nfcv | |- F/_ b n |
|
| 190 | nfmpt1 | |- F/_ b ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) |
|
| 191 | 190 188 | nfrdg | |- F/_ b rec ( ( b e. _V |-> U_ w e. b Pred ( R , A , w ) ) , Pred ( R , A , X ) ) |
| 192 | 1 191 | nfcxfr | |- F/_ b F |
| 193 | 192 189 | nffv | |- F/_ b ( F ` n ) |
| 194 | nfcv | |- F/_ b Pred ( R , A , z ) |
|
| 195 | 193 194 | nfiun | |- F/_ b U_ z e. ( F ` n ) Pred ( R , A , z ) |
| 196 | predeq3 | |- ( w = z -> Pred ( R , A , w ) = Pred ( R , A , z ) ) |
|
| 197 | 196 | cbviunv | |- U_ w e. b Pred ( R , A , w ) = U_ z e. b Pred ( R , A , z ) |
| 198 | iuneq1 | |- ( b = ( F ` n ) -> U_ z e. b Pred ( R , A , z ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
|
| 199 | 197 198 | eqtrid | |- ( b = ( F ` n ) -> U_ w e. b Pred ( R , A , w ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
| 200 | 188 189 195 1 199 | rdgsucmptf | |- ( ( n e. On /\ U_ z e. ( F ` n ) Pred ( R , A , z ) e. _V ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
| 201 | 176 187 200 | syl2an2r | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
| 202 | 201 | 3adant3 | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( F ` suc n ) = U_ z e. ( F ` n ) Pred ( R , A , z ) ) |
| 203 | 202 | eleq2d | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( y e. ( F ` suc n ) <-> y e. U_ z e. ( F ` n ) Pred ( R , A , z ) ) ) |
| 204 | eqeq2 | |- ( x = X -> ( ( f ` suc suc n ) = x <-> ( f ` suc suc n ) = X ) ) |
|
| 205 | 204 | anbi2d | |- ( x = X -> ( ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) <-> ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) ) ) |
| 206 | 205 | 3anbi2d | |- ( x = X -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 207 | 206 | exbidv | |- ( x = X -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 208 | eqeq2 | |- ( x = X -> ( ( g ` suc n ) = x <-> ( g ` suc n ) = X ) ) |
|
| 209 | 208 | anbi2d | |- ( x = X -> ( ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) <-> ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) ) ) |
| 210 | 209 | 3anbi2d | |- ( x = X -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 211 | 210 | exbidv | |- ( x = X -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 212 | 211 | anbi1d | |- ( x = X -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 213 | 212 | exbidv | |- ( x = X -> ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 214 | 207 213 | bibi12d | |- ( x = X -> ( ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) <-> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) |
| 215 | 214 | imbi2d | |- ( x = X -> ( ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) <-> ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) ) |
| 216 | fvex | |- ( f ` suc b ) e. _V |
|
| 217 | eqid | |- ( b e. suc suc n |-> ( f ` suc b ) ) = ( b e. suc suc n |-> ( f ` suc b ) ) |
|
| 218 | 216 217 | fnmpti | |- ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n |
| 219 | 218 | a1i | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n ) |
| 220 | peano2 | |- ( n e. _om -> suc n e. _om ) |
|
| 221 | 220 | adantr | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> suc n e. _om ) |
| 222 | nnord | |- ( suc n e. _om -> Ord suc n ) |
|
| 223 | 221 222 | syl | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> Ord suc n ) |
| 224 | 0elsuc | |- ( Ord suc n -> (/) e. suc suc n ) |
|
| 225 | 223 224 | syl | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> (/) e. suc suc n ) |
| 226 | suceq | |- ( b = (/) -> suc b = suc (/) ) |
|
| 227 | 226 | fveq2d | |- ( b = (/) -> ( f ` suc b ) = ( f ` suc (/) ) ) |
| 228 | fvex | |- ( f ` suc (/) ) e. _V |
|
| 229 | 227 217 228 | fvmpt | |- ( (/) e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) |
| 230 | 225 229 | syl | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) |
| 231 | vex | |- n e. _V |
|
| 232 | 231 | sucex | |- suc n e. _V |
| 233 | 232 | sucid | |- suc n e. suc suc n |
| 234 | suceq | |- ( b = suc n -> suc b = suc suc n ) |
|
| 235 | 234 | fveq2d | |- ( b = suc n -> ( f ` suc b ) = ( f ` suc suc n ) ) |
| 236 | fvex | |- ( f ` suc suc n ) e. _V |
|
| 237 | 235 217 236 | fvmpt | |- ( suc n e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = ( f ` suc suc n ) ) |
| 238 | 233 237 | mp1i | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = ( f ` suc suc n ) ) |
| 239 | simpr2r | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` suc suc n ) = x ) |
|
| 240 | 238 239 | eqtrd | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) |
| 241 | fveq2 | |- ( a = suc c -> ( f ` a ) = ( f ` suc c ) ) |
|
| 242 | suceq | |- ( a = suc c -> suc a = suc suc c ) |
|
| 243 | 242 | fveq2d | |- ( a = suc c -> ( f ` suc a ) = ( f ` suc suc c ) ) |
| 244 | 241 243 | breq12d | |- ( a = suc c -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` suc c ) ( R |` A ) ( f ` suc suc c ) ) ) |
| 245 | simplr3 | |- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) |
|
| 246 | ordsucelsuc | |- ( Ord suc n -> ( c e. suc n <-> suc c e. suc suc n ) ) |
|
| 247 | 223 246 | syl | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( c e. suc n <-> suc c e. suc suc n ) ) |
| 248 | 247 | biimpa | |- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> suc c e. suc suc n ) |
| 249 | 244 245 248 | rspcdva | |- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( f ` suc c ) ( R |` A ) ( f ` suc suc c ) ) |
| 250 | elelsuc | |- ( c e. suc n -> c e. suc suc n ) |
|
| 251 | suceq | |- ( b = c -> suc b = suc c ) |
|
| 252 | 251 | fveq2d | |- ( b = c -> ( f ` suc b ) = ( f ` suc c ) ) |
| 253 | fvex | |- ( f ` suc c ) e. _V |
|
| 254 | 252 217 253 | fvmpt | |- ( c e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) |
| 255 | 250 254 | syl | |- ( c e. suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) |
| 256 | 255 | adantl | |- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) = ( f ` suc c ) ) |
| 257 | suceq | |- ( b = suc c -> suc b = suc suc c ) |
|
| 258 | 257 | fveq2d | |- ( b = suc c -> ( f ` suc b ) = ( f ` suc suc c ) ) |
| 259 | fvex | |- ( f ` suc suc c ) e. _V |
|
| 260 | 258 217 259 | fvmpt | |- ( suc c e. suc suc n -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) = ( f ` suc suc c ) ) |
| 261 | 248 260 | syl | |- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) = ( f ` suc suc c ) ) |
| 262 | 249 256 261 | 3brtr4d | |- ( ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) /\ c e. suc n ) -> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) |
| 263 | 262 | ralrimiva | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) |
| 264 | 232 | sucex | |- suc suc n e. _V |
| 265 | 264 | mptex | |- ( b e. suc suc n |-> ( f ` suc b ) ) e. _V |
| 266 | fneq1 | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g Fn suc suc n <-> ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n ) ) |
|
| 267 | fveq1 | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` (/) ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) ) |
|
| 268 | 267 | eqeq1d | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` (/) ) = ( f ` suc (/) ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) ) ) |
| 269 | fveq1 | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` suc n ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) ) |
|
| 270 | 269 | eqeq1d | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` suc n ) = x <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) ) |
| 271 | 268 270 | anbi12d | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) <-> ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) ) ) |
| 272 | fveq1 | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` c ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ) |
|
| 273 | fveq1 | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( g ` suc c ) = ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) |
|
| 274 | 272 273 | breq12d | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g ` c ) ( R |` A ) ( g ` suc c ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) |
| 275 | 274 | ralbidv | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) <-> A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) |
| 276 | 266 271 275 | 3anbi123d | |- ( g = ( b e. suc suc n |-> ( f ` suc b ) ) -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n /\ ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) /\ A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) ) ) |
| 277 | 265 276 | spcev | |- ( ( ( b e. suc suc n |-> ( f ` suc b ) ) Fn suc suc n /\ ( ( ( b e. suc suc n |-> ( f ` suc b ) ) ` (/) ) = ( f ` suc (/) ) /\ ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc n ) = x ) /\ A. c e. suc n ( ( b e. suc suc n |-> ( f ` suc b ) ) ` c ) ( R |` A ) ( ( b e. suc suc n |-> ( f ` suc b ) ) ` suc c ) ) -> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
| 278 | 219 230 240 263 277 | syl121anc | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) |
| 279 | simpr2l | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` (/) ) = y ) |
|
| 280 | 15 | fveq2d | |- ( a = (/) -> ( f ` suc a ) = ( f ` suc (/) ) ) |
| 281 | 14 280 | breq12d | |- ( a = (/) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( f ` (/) ) ( R |` A ) ( f ` suc (/) ) ) ) |
| 282 | simpr3 | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) |
|
| 283 | 281 282 225 | rspcdva | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> ( f ` (/) ) ( R |` A ) ( f ` suc (/) ) ) |
| 284 | 279 283 | eqbrtrrd | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> y ( R |` A ) ( f ` suc (/) ) ) |
| 285 | eqeq2 | |- ( z = ( f ` suc (/) ) -> ( ( g ` (/) ) = z <-> ( g ` (/) ) = ( f ` suc (/) ) ) ) |
|
| 286 | 285 | anbi1d | |- ( z = ( f ` suc (/) ) -> ( ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) <-> ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) ) ) |
| 287 | 286 | 3anbi2d | |- ( z = ( f ` suc (/) ) -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 288 | 287 | exbidv | |- ( z = ( f ` suc (/) ) -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) ) ) |
| 289 | breq2 | |- ( z = ( f ` suc (/) ) -> ( y ( R |` A ) z <-> y ( R |` A ) ( f ` suc (/) ) ) ) |
|
| 290 | 288 289 | anbi12d | |- ( z = ( f ` suc (/) ) -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) ( f ` suc (/) ) ) ) ) |
| 291 | 228 290 | spcev | |- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = ( f ` suc (/) ) /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) ( f ` suc (/) ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) |
| 292 | 278 284 291 | syl2anc | |- ( ( n e. _om /\ ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) |
| 293 | 292 | ex | |- ( n e. _om -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) |
| 294 | 293 | exlimdv | |- ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) -> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) |
| 295 | fvex | |- ( g ` U. b ) e. _V |
|
| 296 | 101 295 | ifex | |- if ( b = (/) , y , ( g ` U. b ) ) e. _V |
| 297 | eqid | |- ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) |
|
| 298 | 296 297 | fnmpti | |- ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n |
| 299 | 298 | a1i | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n ) |
| 300 | peano2 | |- ( suc n e. _om -> suc suc n e. _om ) |
|
| 301 | 220 300 | syl | |- ( n e. _om -> suc suc n e. _om ) |
| 302 | 301 | 3ad2ant1 | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> suc suc n e. _om ) |
| 303 | nnord | |- ( suc suc n e. _om -> Ord suc suc n ) |
|
| 304 | 302 303 | syl | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> Ord suc suc n ) |
| 305 | 0elsuc | |- ( Ord suc suc n -> (/) e. suc suc suc n ) |
|
| 306 | 304 305 | syl | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> (/) e. suc suc suc n ) |
| 307 | iftrue | |- ( b = (/) -> if ( b = (/) , y , ( g ` U. b ) ) = y ) |
|
| 308 | 307 297 101 | fvmpt | |- ( (/) e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) |
| 309 | 306 308 | syl | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) |
| 310 | 264 | sucid | |- suc suc n e. suc suc suc n |
| 311 | eqeq1 | |- ( b = suc suc n -> ( b = (/) <-> suc suc n = (/) ) ) |
|
| 312 | unieq | |- ( b = suc suc n -> U. b = U. suc suc n ) |
|
| 313 | 312 | fveq2d | |- ( b = suc suc n -> ( g ` U. b ) = ( g ` U. suc suc n ) ) |
| 314 | 311 313 | ifbieq2d | |- ( b = suc suc n -> if ( b = (/) , y , ( g ` U. b ) ) = if ( suc suc n = (/) , y , ( g ` U. suc suc n ) ) ) |
| 315 | nsuceq0 | |- suc suc n =/= (/) |
|
| 316 | 315 | neii | |- -. suc suc n = (/) |
| 317 | 316 | iffalsei | |- if ( suc suc n = (/) , y , ( g ` U. suc suc n ) ) = ( g ` U. suc suc n ) |
| 318 | 314 317 | eqtrdi | |- ( b = suc suc n -> if ( b = (/) , y , ( g ` U. b ) ) = ( g ` U. suc suc n ) ) |
| 319 | fvex | |- ( g ` U. suc suc n ) e. _V |
|
| 320 | 318 297 319 | fvmpt | |- ( suc suc n e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = ( g ` U. suc suc n ) ) |
| 321 | 310 320 | mp1i | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = ( g ` U. suc suc n ) ) |
| 322 | 220 | 3ad2ant1 | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> suc n e. _om ) |
| 323 | 322 222 | syl | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> Ord suc n ) |
| 324 | ordunisuc | |- ( Ord suc n -> U. suc suc n = suc n ) |
|
| 325 | 323 324 | syl | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> U. suc suc n = suc n ) |
| 326 | 325 | fveq2d | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` U. suc suc n ) = ( g ` suc n ) ) |
| 327 | simp22r | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` suc n ) = x ) |
|
| 328 | 321 326 327 | 3eqtrd | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) |
| 329 | simpl3 | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> y ( R |` A ) z ) |
|
| 330 | iftrue | |- ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) = y ) |
|
| 331 | 330 | adantl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> if ( a = (/) , y , ( g ` U. a ) ) = y ) |
| 332 | fveq2 | |- ( a = (/) -> ( g ` a ) = ( g ` (/) ) ) |
|
| 333 | simp22l | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( g ` (/) ) = z ) |
|
| 334 | 332 333 | sylan9eqr | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> ( g ` a ) = z ) |
| 335 | 329 331 334 | 3brtr4d | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a = (/) ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) |
| 336 | 335 | ex | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
| 337 | 336 | adantr | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = (/) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
| 338 | ordsucelsuc | |- ( Ord suc n -> ( b e. suc n <-> suc b e. suc suc n ) ) |
|
| 339 | 323 338 | syl | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc n <-> suc b e. suc suc n ) ) |
| 340 | elnn | |- ( ( b e. suc n /\ suc n e. _om ) -> b e. _om ) |
|
| 341 | 322 340 | sylan2 | |- ( ( b e. suc n /\ ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) -> b e. _om ) |
| 342 | 341 | ancoms | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> b e. _om ) |
| 343 | nnord | |- ( b e. _om -> Ord b ) |
|
| 344 | 342 343 | syl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> Ord b ) |
| 345 | ordunisuc | |- ( Ord b -> U. suc b = b ) |
|
| 346 | 344 345 | syl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> U. suc b = b ) |
| 347 | 346 | fveq2d | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` U. suc b ) = ( g ` b ) ) |
| 348 | simp23 | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) |
|
| 349 | fveq2 | |- ( c = b -> ( g ` c ) = ( g ` b ) ) |
|
| 350 | suceq | |- ( c = b -> suc c = suc b ) |
|
| 351 | 350 | fveq2d | |- ( c = b -> ( g ` suc c ) = ( g ` suc b ) ) |
| 352 | 349 351 | breq12d | |- ( c = b -> ( ( g ` c ) ( R |` A ) ( g ` suc c ) <-> ( g ` b ) ( R |` A ) ( g ` suc b ) ) ) |
| 353 | 352 | rspcv | |- ( b e. suc n -> ( A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) -> ( g ` b ) ( R |` A ) ( g ` suc b ) ) ) |
| 354 | 348 353 | mpan9 | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` b ) ( R |` A ) ( g ` suc b ) ) |
| 355 | 347 354 | eqbrtrd | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ b e. suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) |
| 356 | 355 | ex | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( b e. suc n -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) |
| 357 | 339 356 | sylbird | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( suc b e. suc suc n -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) |
| 358 | 357 | imp | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) |
| 359 | eleq1 | |- ( a = suc b -> ( a e. suc suc n <-> suc b e. suc suc n ) ) |
|
| 360 | 359 | anbi2d | |- ( a = suc b -> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) <-> ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) ) ) |
| 361 | eqeq1 | |- ( a = suc b -> ( a = (/) <-> suc b = (/) ) ) |
|
| 362 | unieq | |- ( a = suc b -> U. a = U. suc b ) |
|
| 363 | 362 | fveq2d | |- ( a = suc b -> ( g ` U. a ) = ( g ` U. suc b ) ) |
| 364 | 361 363 | ifbieq2d | |- ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) = if ( suc b = (/) , y , ( g ` U. suc b ) ) ) |
| 365 | nsuceq0 | |- suc b =/= (/) |
|
| 366 | 365 | neii | |- -. suc b = (/) |
| 367 | 366 | iffalsei | |- if ( suc b = (/) , y , ( g ` U. suc b ) ) = ( g ` U. suc b ) |
| 368 | 364 367 | eqtrdi | |- ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) = ( g ` U. suc b ) ) |
| 369 | fveq2 | |- ( a = suc b -> ( g ` a ) = ( g ` suc b ) ) |
|
| 370 | 368 369 | breq12d | |- ( a = suc b -> ( if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) <-> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) |
| 371 | 360 370 | imbi12d | |- ( a = suc b -> ( ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) <-> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ suc b e. suc suc n ) -> ( g ` U. suc b ) ( R |` A ) ( g ` suc b ) ) ) ) |
| 372 | 358 371 | mpbiri | |- ( a = suc b -> ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
| 373 | 372 | com12 | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
| 374 | 373 | rexlimdvw | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( E. b e. _om a = suc b -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) ) |
| 375 | elnn | |- ( ( a e. suc suc n /\ suc suc n e. _om ) -> a e. _om ) |
|
| 376 | 375 | ancoms | |- ( ( suc suc n e. _om /\ a e. suc suc n ) -> a e. _om ) |
| 377 | 302 376 | sylan | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> a e. _om ) |
| 378 | nn0suc | |- ( a e. _om -> ( a = (/) \/ E. b e. _om a = suc b ) ) |
|
| 379 | 377 378 | syl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( a = (/) \/ E. b e. _om a = suc b ) ) |
| 380 | 337 374 379 | mpjaod | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> if ( a = (/) , y , ( g ` U. a ) ) ( R |` A ) ( g ` a ) ) |
| 381 | elelsuc | |- ( a e. suc suc n -> a e. suc suc suc n ) |
|
| 382 | eqeq1 | |- ( b = a -> ( b = (/) <-> a = (/) ) ) |
|
| 383 | unieq | |- ( b = a -> U. b = U. a ) |
|
| 384 | 383 | fveq2d | |- ( b = a -> ( g ` U. b ) = ( g ` U. a ) ) |
| 385 | 382 384 | ifbieq2d | |- ( b = a -> if ( b = (/) , y , ( g ` U. b ) ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
| 386 | fvex | |- ( g ` U. a ) e. _V |
|
| 387 | 101 386 | ifex | |- if ( a = (/) , y , ( g ` U. a ) ) e. _V |
| 388 | 385 297 387 | fvmpt | |- ( a e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
| 389 | 381 388 | syl | |- ( a e. suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
| 390 | 389 | adantl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) = if ( a = (/) , y , ( g ` U. a ) ) ) |
| 391 | ordsucelsuc | |- ( Ord suc suc n -> ( a e. suc suc n <-> suc a e. suc suc suc n ) ) |
|
| 392 | 304 391 | syl | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> ( a e. suc suc n <-> suc a e. suc suc suc n ) ) |
| 393 | 392 | biimpa | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> suc a e. suc suc suc n ) |
| 394 | eqeq1 | |- ( b = suc a -> ( b = (/) <-> suc a = (/) ) ) |
|
| 395 | unieq | |- ( b = suc a -> U. b = U. suc a ) |
|
| 396 | 395 | fveq2d | |- ( b = suc a -> ( g ` U. b ) = ( g ` U. suc a ) ) |
| 397 | 394 396 | ifbieq2d | |- ( b = suc a -> if ( b = (/) , y , ( g ` U. b ) ) = if ( suc a = (/) , y , ( g ` U. suc a ) ) ) |
| 398 | nsuceq0 | |- suc a =/= (/) |
|
| 399 | 398 | neii | |- -. suc a = (/) |
| 400 | 399 | iffalsei | |- if ( suc a = (/) , y , ( g ` U. suc a ) ) = ( g ` U. suc a ) |
| 401 | 397 400 | eqtrdi | |- ( b = suc a -> if ( b = (/) , y , ( g ` U. b ) ) = ( g ` U. suc a ) ) |
| 402 | fvex | |- ( g ` U. suc a ) e. _V |
|
| 403 | 401 297 402 | fvmpt | |- ( suc a e. suc suc suc n -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` U. suc a ) ) |
| 404 | 393 403 | syl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` U. suc a ) ) |
| 405 | nnord | |- ( a e. _om -> Ord a ) |
|
| 406 | 377 405 | syl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> Ord a ) |
| 407 | ordunisuc | |- ( Ord a -> U. suc a = a ) |
|
| 408 | 406 407 | syl | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> U. suc a = a ) |
| 409 | 408 | fveq2d | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( g ` U. suc a ) = ( g ` a ) ) |
| 410 | 404 409 | eqtrd | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) = ( g ` a ) ) |
| 411 | 380 390 410 | 3brtr4d | |- ( ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) /\ a e. suc suc n ) -> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) |
| 412 | 411 | ralrimiva | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) |
| 413 | 264 | sucex | |- suc suc suc n e. _V |
| 414 | 413 | mptex | |- ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) e. _V |
| 415 | fneq1 | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f Fn suc suc suc n <-> ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n ) ) |
|
| 416 | fveq1 | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` (/) ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) ) |
|
| 417 | 416 | eqeq1d | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` (/) ) = y <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y ) ) |
| 418 | fveq1 | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` suc suc n ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) ) |
|
| 419 | 418 | eqeq1d | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` suc suc n ) = x <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) ) |
| 420 | 417 419 | anbi12d | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) <-> ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) ) ) |
| 421 | fveq1 | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` a ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ) |
|
| 422 | fveq1 | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( f ` suc a ) = ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) |
|
| 423 | 421 422 | breq12d | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f ` a ) ( R |` A ) ( f ` suc a ) <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) |
| 424 | 423 | ralbidv | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) <-> A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) |
| 425 | 415 420 424 | 3anbi123d | |- ( f = ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) -> ( ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n /\ ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) /\ A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) ) ) |
| 426 | 414 425 | spcev | |- ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) Fn suc suc suc n /\ ( ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` (/) ) = y /\ ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc suc n ) = x ) /\ A. a e. suc suc n ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` a ) ( R |` A ) ( ( b e. suc suc suc n |-> if ( b = (/) , y , ( g ` U. b ) ) ) ` suc a ) ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
| 427 | 299 309 328 412 426 | syl121anc | |- ( ( n e. _om /\ ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) |
| 428 | 427 | 3exp | |- ( n e. _om -> ( ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) -> ( y ( R |` A ) z -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) ) |
| 429 | 428 | exlimdv | |- ( n e. _om -> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) -> ( y ( R |` A ) z -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) ) |
| 430 | 429 | impd | |- ( n e. _om -> ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 431 | 430 | exlimdv | |- ( n e. _om -> ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) -> E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) ) ) |
| 432 | 294 431 | impbid | |- ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) ) ) |
| 433 | vex | |- z e. _V |
|
| 434 | 433 | brresi | |- ( y ( R |` A ) z <-> ( y e. A /\ y R z ) ) |
| 435 | 434 | anbi2i | |- ( ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) |
| 436 | 435 | exbii | |- ( E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ y ( R |` A ) z ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) |
| 437 | 432 436 | bitrdi | |- ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = x ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = x ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 438 | 215 437 | vtoclg | |- ( X e. A -> ( n e. _om -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) ) |
| 439 | 438 | impcom | |- ( ( n e. _om /\ X e. A ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 440 | 439 | adantrl | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 441 | 440 | 3adant3 | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> E. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) /\ ( y e. A /\ y R z ) ) ) ) |
| 442 | 175 203 441 | 3bitr4rd | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) |
| 443 | 442 | alrimiv | |- ( ( n e. _om /\ ( R Se A /\ X e. A ) /\ A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) |
| 444 | 443 | 3exp | |- ( n e. _om -> ( ( R Se A /\ X e. A ) -> ( A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) |
| 445 | 444 | a2d | |- ( n e. _om -> ( ( ( R Se A /\ X e. A ) -> A. z ( E. g ( g Fn suc suc n /\ ( ( g ` (/) ) = z /\ ( g ` suc n ) = X ) /\ A. c e. suc n ( g ` c ) ( R |` A ) ( g ` suc c ) ) <-> z e. ( F ` n ) ) ) -> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc suc n /\ ( ( f ` (/) ) = y /\ ( f ` suc suc n ) = X ) /\ A. a e. suc suc n ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` suc n ) ) ) ) ) |
| 446 | 27 68 82 96 164 445 | finds | |- ( N e. _om -> ( ( R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) ) |
| 447 | 446 | 3impib | |- ( ( N e. _om /\ R Se A /\ X e. A ) -> A. y ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) |
| 448 | 447 | 19.21bi | |- ( ( N e. _om /\ R Se A /\ X e. A ) -> ( E. f ( f Fn suc suc N /\ ( ( f ` (/) ) = y /\ ( f ` suc N ) = X ) /\ A. a e. suc N ( f ` a ) ( R |` A ) ( f ` suc a ) ) <-> y e. ( F ` N ) ) ) |