This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ttrclse . Show that all finite ordinal function values of F are subsets of A . (Contributed by Scott Fenton, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ttrclselem.1 | ⊢ 𝐹 = rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| Assertion | ttrclselem1 | ⊢ ( 𝑁 ∈ ω → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttrclselem.1 | ⊢ 𝐹 = rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 2 | nn0suc | ⊢ ( 𝑁 ∈ ω → ( 𝑁 = ∅ ∨ ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 ) ) | |
| 3 | 1 | fveq1i | ⊢ ( 𝐹 ‘ 𝑁 ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ 𝑁 ) |
| 4 | fveq2 | ⊢ ( 𝑁 = ∅ → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ 𝑁 ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ) | |
| 5 | 3 4 | eqtrid | ⊢ ( 𝑁 = ∅ → ( 𝐹 ‘ 𝑁 ) = ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ) |
| 6 | rdg0g | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = Pred ( 𝑅 , 𝐴 , 𝑋 ) ) | |
| 7 | predss | ⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) ⊆ 𝐴 | |
| 8 | 6 7 | eqsstrdi | ⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ⊆ 𝐴 ) |
| 9 | rdg0n | ⊢ ( ¬ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) = ∅ ) | |
| 10 | 0ss | ⊢ ∅ ⊆ 𝐴 | |
| 11 | 9 10 | eqsstrdi | ⊢ ( ¬ Pred ( 𝑅 , 𝐴 , 𝑋 ) ∈ V → ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ⊆ 𝐴 ) |
| 12 | 8 11 | pm2.61i | ⊢ ( rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ‘ ∅ ) ⊆ 𝐴 |
| 13 | 5 12 | eqsstrdi | ⊢ ( 𝑁 = ∅ → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |
| 14 | nnon | ⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) | |
| 15 | nfcv | ⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑋 ) | |
| 16 | nfcv | ⊢ Ⅎ 𝑏 𝑛 | |
| 17 | nfmpt1 | ⊢ Ⅎ 𝑏 ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) | |
| 18 | 17 15 | nfrdg | ⊢ Ⅎ 𝑏 rec ( ( 𝑏 ∈ V ↦ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) ) , Pred ( 𝑅 , 𝐴 , 𝑋 ) ) |
| 19 | 1 18 | nfcxfr | ⊢ Ⅎ 𝑏 𝐹 |
| 20 | 19 16 | nffv | ⊢ Ⅎ 𝑏 ( 𝐹 ‘ 𝑛 ) |
| 21 | nfcv | ⊢ Ⅎ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑡 ) | |
| 22 | 20 21 | nfiun | ⊢ Ⅎ 𝑏 ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) |
| 23 | predeq3 | ⊢ ( 𝑤 = 𝑡 → Pred ( 𝑅 , 𝐴 , 𝑤 ) = Pred ( 𝑅 , 𝐴 , 𝑡 ) ) | |
| 24 | 23 | cbviunv | ⊢ ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑡 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑡 ) |
| 25 | iuneq1 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑡 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑡 ) = ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) | |
| 26 | 24 25 | eqtrid | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑛 ) → ∪ 𝑤 ∈ 𝑏 Pred ( 𝑅 , 𝐴 , 𝑤 ) = ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
| 27 | 15 16 22 1 26 | rdgsucmptf | ⊢ ( ( 𝑛 ∈ On ∧ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) = ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ) |
| 28 | iunss | ⊢ ( ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 ↔ ∀ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 ) | |
| 29 | predss | ⊢ Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 | |
| 30 | 29 | a1i | ⊢ ( 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) → Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 ) |
| 31 | 28 30 | mprgbir | ⊢ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ⊆ 𝐴 |
| 32 | 27 31 | eqsstrdi | ⊢ ( ( 𝑛 ∈ On ∧ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
| 33 | 14 32 | sylan | ⊢ ( ( 𝑛 ∈ ω ∧ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
| 34 | 15 16 22 1 26 | rdgsucmptnf | ⊢ ( ¬ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V → ( 𝐹 ‘ suc 𝑛 ) = ∅ ) |
| 35 | 34 10 | eqsstrdi | ⊢ ( ¬ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
| 36 | 35 | adantl | ⊢ ( ( 𝑛 ∈ ω ∧ ¬ ∪ 𝑡 ∈ ( 𝐹 ‘ 𝑛 ) Pred ( 𝑅 , 𝐴 , 𝑡 ) ∈ V ) → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
| 37 | 33 36 | pm2.61dan | ⊢ ( 𝑛 ∈ ω → ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) |
| 38 | fveq2 | ⊢ ( 𝑁 = suc 𝑛 → ( 𝐹 ‘ 𝑁 ) = ( 𝐹 ‘ suc 𝑛 ) ) | |
| 39 | 38 | sseq1d | ⊢ ( 𝑁 = suc 𝑛 → ( ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ↔ ( 𝐹 ‘ suc 𝑛 ) ⊆ 𝐴 ) ) |
| 40 | 37 39 | syl5ibrcom | ⊢ ( 𝑛 ∈ ω → ( 𝑁 = suc 𝑛 → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) ) |
| 41 | 40 | rexlimiv | ⊢ ( ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |
| 42 | 13 41 | jaoi | ⊢ ( ( 𝑁 = ∅ ∨ ∃ 𝑛 ∈ ω 𝑁 = suc 𝑛 ) → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |
| 43 | 2 42 | syl | ⊢ ( 𝑁 ∈ ω → ( 𝐹 ‘ 𝑁 ) ⊆ 𝐴 ) |