This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connected component containing A is the left coset of the identity component containing A . (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpconncomp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| tgpconncomp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tgpconncomp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tgpconncomp.s | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | ||
| tgpconncompeqg.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | ||
| Assertion | tgpconncompeqg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpconncomp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | tgpconncomp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | tgpconncomp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 4 | tgpconncomp.s | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 5 | tgpconncompeqg.r | ⊢ ∼ = ( 𝐺 ~QG 𝑆 ) | |
| 6 | dfec2 | ⊢ ( 𝐴 ∈ 𝑋 → [ 𝐴 ] ∼ = { 𝑧 ∣ 𝐴 ∼ 𝑧 } ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = { 𝑧 ∣ 𝐴 ∼ 𝑧 } ) |
| 8 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 | |
| 9 | sspwuni | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 ↔ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 ) | |
| 10 | 8 9 | mpbi | ⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 |
| 11 | 4 10 | eqsstri | ⊢ 𝑆 ⊆ 𝑋 |
| 12 | 11 | a1i | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ 𝑋 ) |
| 13 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 15 | 1 13 14 5 | eqgval | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝑧 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 16 | 12 15 | syldan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑧 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 17 | simp2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) → 𝑧 ∈ 𝑋 ) | |
| 18 | 16 17 | biimtrdi | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑧 → 𝑧 ∈ 𝑋 ) ) |
| 19 | 18 | abssdv | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → { 𝑧 ∣ 𝐴 ∼ 𝑧 } ⊆ 𝑋 ) |
| 20 | 7 19 | eqsstrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ ⊆ 𝑋 ) |
| 21 | simpr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 22 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 23 | 1 14 2 13 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 0 ) |
| 24 | 22 23 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 0 ) |
| 25 | 3 1 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 27 | 22 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 28 | 1 2 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
| 29 | 27 28 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
| 30 | 4 | conncompid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → 0 ∈ 𝑆 ) |
| 31 | 26 29 30 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 0 ∈ 𝑆 ) |
| 32 | 24 31 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
| 33 | 1 13 14 5 | eqgval | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝐴 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) ) ) |
| 34 | 12 33 | syldan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝐴 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) ) ) |
| 35 | 21 21 32 34 | mpbir3and | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∼ 𝐴 ) |
| 36 | elecg | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) | |
| 37 | 21 21 36 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ [ 𝐴 ] ∼ ↔ 𝐴 ∼ 𝐴 ) ) |
| 38 | 35 37 | mpbird | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ [ 𝐴 ] ∼ ) |
| 39 | 1 5 14 | eqglact | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 40 | 11 39 | mp3an2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 41 | 22 40 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t [ 𝐴 ] ∼ ) = ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ) |
| 43 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 44 | eqid | ⊢ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) | |
| 45 | 44 1 14 3 | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 46 | hmeocn | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 48 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 49 | 26 48 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 50 | 11 49 | sseqtrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 51 | 4 | conncompconn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 52 | 26 29 51 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 53 | 43 47 50 52 | connima | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn ) |
| 54 | 42 53 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t [ 𝐴 ] ∼ ) ∈ Conn ) |
| 55 | eqid | ⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 56 | 55 | conncompss | ⊢ ( ( [ 𝐴 ] ∼ ⊆ 𝑋 ∧ 𝐴 ∈ [ 𝐴 ] ∼ ∧ ( 𝐽 ↾t [ 𝐴 ] ∼ ) ∈ Conn ) → [ 𝐴 ] ∼ ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 57 | 20 38 54 56 | syl3anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 58 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) | |
| 59 | 44 | mptpreima | ⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) = { 𝑧 ∈ 𝑋 ∣ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑦 } |
| 60 | 59 | ssrab3 | ⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑋 |
| 61 | 29 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 0 ∈ 𝑋 ) |
| 62 | 1 14 2 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 63 | 22 62 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 64 | 63 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) = 𝐴 ) |
| 65 | simprrl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝐴 ∈ 𝑦 ) | |
| 66 | 64 65 | eqeltrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ∈ 𝑦 ) |
| 67 | oveq2 | ⊢ ( 𝑧 = 0 → ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ) | |
| 68 | 67 | eleq1d | ⊢ ( 𝑧 = 0 → ( ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑦 ↔ ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ∈ 𝑦 ) ) |
| 69 | 68 59 | elrab2 | ⊢ ( 0 ∈ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ↔ ( 0 ∈ 𝑋 ∧ ( 𝐴 ( +g ‘ 𝐺 ) 0 ) ∈ 𝑦 ) ) |
| 70 | 61 66 69 | sylanbrc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 0 ∈ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ) |
| 71 | hmeocnvcn | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 72 | 45 71 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 74 | simprl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ 𝑋 ) | |
| 75 | 49 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 76 | 74 75 | sseqtrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ ∪ 𝐽 ) |
| 77 | simprrr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐽 ↾t 𝑦 ) ∈ Conn ) | |
| 78 | 43 73 76 77 | connima | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝐽 ↾t ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ) ∈ Conn ) |
| 79 | 4 | conncompss | ⊢ ( ( ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑋 ∧ 0 ∈ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ∧ ( 𝐽 ↾t ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ) ∈ Conn ) → ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ) |
| 80 | 60 70 78 79 | mp3an2i | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ) |
| 81 | eqid | ⊢ ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) = ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 82 | 81 1 14 13 | grplactcnv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 83 | 22 82 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 84 | 83 | simpld | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 85 | 81 1 | grplactfval | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 86 | 85 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 87 | 86 | f1oeq1d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑧 ∈ 𝑋 ↦ ( 𝑔 ( +g ‘ 𝐺 ) 𝑧 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 88 | 84 87 | mpbid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 89 | 88 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) |
| 90 | f1ocnv | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 ) | |
| 91 | f1ofun | ⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → Fun ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 92 | 89 90 91 | 3syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → Fun ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 93 | f1odm | ⊢ ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 –1-1-onto→ 𝑋 → dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑋 ) | |
| 94 | 89 90 93 | 3syl | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) = 𝑋 ) |
| 95 | 74 94 | sseqtrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
| 96 | funimass3 | ⊢ ( ( Fun ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ∧ 𝑦 ⊆ dom ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) ) → ( ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ↔ 𝑦 ⊆ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ) | |
| 97 | 92 95 96 | syl2anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → ( ( ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑦 ) ⊆ 𝑆 ↔ 𝑦 ⊆ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ) |
| 98 | 80 97 | mpbid | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 99 | 41 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → [ 𝐴 ] ∼ = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 100 | imacnvcnv | ⊢ ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) = ( ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) | |
| 101 | 99 100 | eqtr4di | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → [ 𝐴 ] ∼ = ( ◡ ◡ ( 𝑧 ∈ 𝑋 ↦ ( 𝐴 ( +g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 102 | 98 101 | sseqtrrd | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑦 ⊆ 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) |
| 103 | 102 | expr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ⊆ 𝑋 ) → ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 104 | 58 103 | sylan2 | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 105 | 104 | ralrimiva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 106 | eleq2w | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 107 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t 𝑦 ) ) | |
| 108 | 107 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐽 ↾t 𝑥 ) ∈ Conn ↔ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) |
| 109 | 106 108 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ↔ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) |
| 110 | 109 | ralrab | ⊢ ( ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ⊆ [ 𝐴 ] ∼ ↔ ∀ 𝑦 ∈ 𝒫 𝑋 ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) → 𝑦 ⊆ [ 𝐴 ] ∼ ) ) |
| 111 | 105 110 | sylibr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ⊆ [ 𝐴 ] ∼ ) |
| 112 | unissb | ⊢ ( ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ [ 𝐴 ] ∼ ↔ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ⊆ [ 𝐴 ] ∼ ) | |
| 113 | 111 112 | sylibr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ [ 𝐴 ] ∼ ) |
| 114 | 57 113 | eqssd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |