This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of R -coset of A . Definition 34 of Suppes p. 81. (Contributed by NM, 3-Jan-1997) (Proof shortened by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfec2 | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] 𝑅 = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ec | ⊢ [ 𝐴 ] 𝑅 = ( 𝑅 “ { 𝐴 } ) | |
| 2 | imasng | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑅 “ { 𝐴 } ) = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) | |
| 3 | 1 2 | eqtrid | ⊢ ( 𝐴 ∈ 𝑉 → [ 𝐴 ] 𝑅 = { 𝑦 ∣ 𝐴 𝑅 𝑦 } ) |