This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connected component containing A is connected. (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| Assertion | conncompconn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 2 | uniiun | ⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } = ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 | |
| 3 | 1 2 | eqtri | ⊢ 𝑆 = ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 |
| 4 | 3 | oveq2i | ⊢ ( 𝐽 ↾t 𝑆 ) = ( 𝐽 ↾t ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ) |
| 5 | simpl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 6 | simpr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) → 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) | |
| 7 | eleq2w | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t 𝑦 ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐽 ↾t 𝑥 ) ∈ Conn ↔ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ↔ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) |
| 11 | 10 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) |
| 12 | 6 11 | sylib | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) → ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) |
| 13 | 12 | simpld | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) → 𝑦 ∈ 𝒫 𝑋 ) |
| 14 | 13 | elpwid | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) → 𝑦 ⊆ 𝑋 ) |
| 15 | 12 | simprd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) → ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) |
| 16 | 15 | simpld | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) → 𝐴 ∈ 𝑦 ) |
| 17 | 15 | simprd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) → ( 𝐽 ↾t 𝑦 ) ∈ Conn ) |
| 18 | 5 14 16 17 | iunconn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } 𝑦 ) ∈ Conn ) |
| 19 | 4 18 | eqeltrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |