This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subgroup left coset equivalence relation. (Contributed by Mario Carneiro, 15-Jan-2015) (Revised by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqgval.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqgval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| eqgval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| eqgval.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | ||
| Assertion | eqgval | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqgval.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqgval.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 3 | eqgval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | eqgval.r | ⊢ 𝑅 = ( 𝐺 ~QG 𝑆 ) | |
| 5 | 1 2 3 4 | eqgfval | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } ) |
| 6 | 5 | breqd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ) ) |
| 7 | brabv | ⊢ ( 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 9 | simpr1 | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐴 ∈ 𝑋 ) | |
| 10 | 9 | elexd | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐴 ∈ V ) |
| 11 | simpr2 | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐵 ∈ 𝑋 ) | |
| 12 | 11 | elexd | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → 𝐵 ∈ V ) |
| 13 | 10 12 | jca | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 14 | vex | ⊢ 𝑥 ∈ V | |
| 15 | vex | ⊢ 𝑦 ∈ V | |
| 16 | 14 15 | prss | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝑋 ) |
| 17 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑋 ↔ 𝐴 ∈ 𝑋 ) ) | |
| 18 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋 ) ) | |
| 19 | 17 18 | bi2anan9 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
| 20 | 16 19 | bitr3id | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( { 𝑥 , 𝑦 } ⊆ 𝑋 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ) |
| 21 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐴 ) ) | |
| 22 | id | ⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) | |
| 23 | 21 22 | oveqan12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) = ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ) |
| 24 | 23 | eleq1d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ↔ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) |
| 25 | 20 24 | anbi12d | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
| 26 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) | |
| 27 | 25 26 | bitr4di | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
| 28 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } | |
| 29 | 27 28 | brabga | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
| 30 | 8 13 29 | pm5.21nd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 { 〈 𝑥 , 𝑦 〉 ∣ ( { 𝑥 , 𝑦 } ⊆ 𝑋 ∧ ( ( 𝑁 ‘ 𝑥 ) + 𝑦 ) ∈ 𝑆 ) } 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |
| 31 | 6 30 | bitrd | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( 𝑁 ‘ 𝐴 ) + 𝐵 ) ∈ 𝑆 ) ) ) |