This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| Assertion | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpinv.u | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | grpinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 5 | 1 2 3 4 | grpinvval | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
| 7 | 1 2 3 | grpinveu | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
| 8 | riotacl2 | ⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ) |
| 10 | 6 9 | eqeltrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ) |
| 11 | oveq1 | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝑋 ) → ( 𝑦 + 𝑋 ) = ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) ) | |
| 12 | 11 | eqeq1d | ⊢ ( 𝑦 = ( 𝑁 ‘ 𝑋 ) → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) ) |
| 13 | 12 | elrab | ⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) ) |
| 14 | 13 | simprbi | ⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
| 15 | 10 14 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |