This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connected component containing A contains A . (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| Assertion | conncompid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 2 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 3 | 2 | snssd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ⊆ 𝑋 ) |
| 4 | snex | ⊢ { 𝐴 } ∈ V | |
| 5 | 4 | elpw | ⊢ ( { 𝐴 } ∈ 𝒫 𝑋 ↔ { 𝐴 } ⊆ 𝑋 ) |
| 6 | 3 5 | sylibr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ∈ 𝒫 𝑋 ) |
| 7 | snidg | ⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 } ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ { 𝐴 } ) |
| 9 | restsn2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) = 𝒫 { 𝐴 } ) | |
| 10 | pwsn | ⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } | |
| 11 | indisconn | ⊢ { ∅ , { 𝐴 } } ∈ Conn | |
| 12 | 10 11 | eqeltri | ⊢ 𝒫 { 𝐴 } ∈ Conn |
| 13 | 9 12 | eqeltrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) |
| 14 | 8 13 | jca | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) |
| 15 | eleq2 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ { 𝐴 } ) ) | |
| 16 | oveq2 | ⊢ ( 𝑥 = { 𝐴 } → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t { 𝐴 } ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑥 = { 𝐴 } → ( ( 𝐽 ↾t 𝑥 ) ∈ Conn ↔ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑥 = { 𝐴 } → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ↔ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) ) |
| 19 | 15 18 | anbi12d | ⊢ ( 𝑥 = { 𝐴 } → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ↔ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) ) ) |
| 20 | 19 | rspcev | ⊢ ( ( { 𝐴 } ∈ 𝒫 𝑋 ∧ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐴 ∈ { 𝐴 } ∧ ( 𝐽 ↾t { 𝐴 } ) ∈ Conn ) ) ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ) |
| 21 | 6 8 14 20 | syl12anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ) |
| 22 | elunirab | ⊢ ( 𝐴 ∈ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ↔ ∃ 𝑥 ∈ 𝒫 𝑋 ( 𝐴 ∈ 𝑥 ∧ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ) ) | |
| 23 | 21 22 | sylibr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 24 | 23 1 | eleqtrrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑆 ) |