This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left group action of element A in a topological group G is a homeomorphism from the group to itself. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgplacthmeo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) | |
| tgplacthmeo.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| tgplacthmeo.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| tgplacthmeo.4 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| Assertion | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Homeo 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgplacthmeo.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) | |
| 2 | tgplacthmeo.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | tgplacthmeo.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | tgplacthmeo.4 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 5 | tgptmd | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) | |
| 6 | 1 2 3 4 | tmdlactcn | ⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
| 8 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 9 | eqid | ⊢ ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) = ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) | |
| 10 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 11 | 9 2 3 10 | grplactcnv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 12 | 8 11 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 13 | 12 | simprd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 14 | 9 2 | grplactfval | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
| 16 | 15 1 | eqtr4di | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = 𝐹 ) |
| 17 | 16 | cnveqd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ◡ 𝐹 ) |
| 18 | 2 10 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 19 | 8 18 | sylan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 20 | 9 2 | grplactfval | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 21 | 19 20 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 22 | 13 17 21 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ◡ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 23 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) | |
| 24 | 23 2 3 4 | tmdlactcn | ⊢ ( ( 𝐺 ∈ TopMnd ∧ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 25 | 5 19 24 | syl2an2r | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 26 | 22 25 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → ◡ 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) |
| 27 | ishmeo | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐽 ) ↔ ( 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ∧ ◡ 𝐹 ∈ ( 𝐽 Cn 𝐽 ) ) ) | |
| 28 | 7 26 27 | sylanbrc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐹 ∈ ( 𝐽 Homeo 𝐽 ) ) |