This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity component, the connected component containing the identity element, is a closed ( conncompcld ) normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpconncomp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| tgpconncomp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tgpconncomp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| tgpconncomp.s | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | ||
| Assertion | tgpconncomp | ⊢ ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpconncomp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | tgpconncomp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | tgpconncomp.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 4 | tgpconncomp.s | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 5 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 | |
| 6 | sspwuni | ⊢ ( { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝒫 𝑋 ↔ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 ) | |
| 7 | 5 6 | mpbi | ⊢ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 0 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ⊆ 𝑋 |
| 8 | 4 7 | eqsstri | ⊢ 𝑆 ⊆ 𝑋 |
| 9 | 8 | a1i | ⊢ ( 𝐺 ∈ TopGrp → 𝑆 ⊆ 𝑋 ) |
| 10 | 3 1 | tgptopon | ⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 | tgpgrp | ⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) | |
| 12 | 1 2 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝑋 ) |
| 13 | 11 12 | syl | ⊢ ( 𝐺 ∈ TopGrp → 0 ∈ 𝑋 ) |
| 14 | 4 | conncompid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → 0 ∈ 𝑆 ) |
| 15 | 10 13 14 | syl2anc | ⊢ ( 𝐺 ∈ TopGrp → 0 ∈ 𝑆 ) |
| 16 | 15 | ne0d | ⊢ ( 𝐺 ∈ TopGrp → 𝑆 ≠ ∅ ) |
| 17 | df-ima | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) = ran ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) | |
| 18 | resmpt | ⊢ ( 𝑆 ⊆ 𝑋 → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) | |
| 19 | 8 18 | ax-mp | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
| 20 | 19 | rneqi | ⊢ ran ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ↾ 𝑆 ) = ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
| 21 | 17 20 | eqtri | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) = ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) |
| 22 | imassrn | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ ran ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) | |
| 23 | 11 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 25 | 9 | sselda | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑋 ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 27 | simpr | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 28 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 29 | 1 28 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 30 | 24 26 27 29 | syl3anc | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑋 ) |
| 31 | 30 | fmpttd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑋 ⟶ 𝑋 ) |
| 32 | 31 | frnd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑋 ) |
| 33 | 22 32 | sstrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑋 ) |
| 34 | 1 2 28 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
| 35 | 23 25 34 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) = 0 ) |
| 36 | simpr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 37 | ovex | ⊢ ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ V | |
| 38 | eqid | ⊢ ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) | |
| 39 | oveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ) | |
| 40 | 38 39 | elrnmpt1s | ⊢ ( ( 𝑦 ∈ 𝑆 ∧ ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ V ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) |
| 41 | 36 37 40 | sylancl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) |
| 42 | 35 41 | eqeltrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ) |
| 43 | 42 21 | eleqtrrdi | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 0 ∈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) |
| 44 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 45 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 46 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 47 | 1 45 46 28 | grpsubval | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 48 | 25 47 | sylan | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 49 | 48 | mpteq2dva | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 50 | 1 46 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 51 | 23 50 | sylan | ⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑋 ) |
| 52 | 1 46 | grpinvf | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 ) |
| 53 | 11 52 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 ) |
| 54 | 53 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( invg ‘ 𝐺 ) : 𝑋 ⟶ 𝑋 ) |
| 55 | 54 | feqmptd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( invg ‘ 𝐺 ) = ( 𝑧 ∈ 𝑋 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 56 | eqidd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ) | |
| 57 | oveq2 | ⊢ ( 𝑤 = ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) = ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) | |
| 58 | 51 55 56 57 | fmptco | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) = ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 59 | 49 58 | eqtr4d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) ) |
| 60 | 3 46 | grpinvhmeo | ⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 61 | 60 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 62 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) | |
| 63 | 62 1 45 3 | tgplacthmeo | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 64 | 25 63 | syldan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 65 | hmeoco | ⊢ ( ( ( invg ‘ 𝐺 ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) | |
| 66 | 61 64 65 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑦 ( +g ‘ 𝐺 ) 𝑤 ) ) ∘ ( invg ‘ 𝐺 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 67 | 59 66 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
| 68 | hmeocn | ⊢ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) | |
| 69 | 67 68 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 70 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 71 | 10 70 | syl | ⊢ ( 𝐺 ∈ TopGrp → 𝑋 = ∪ 𝐽 ) |
| 72 | 71 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑋 = ∪ 𝐽 ) |
| 73 | 8 72 | sseqtrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 74 | 4 | conncompconn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 0 ∈ 𝑋 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 75 | 10 13 74 | syl2anc | ⊢ ( 𝐺 ∈ TopGrp → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 76 | 75 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝐽 ↾t 𝑆 ) ∈ Conn ) |
| 77 | 44 69 73 76 | connima | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn ) |
| 78 | 4 | conncompss | ⊢ ( ( ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑋 ∧ 0 ∈ ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ∧ ( 𝐽 ↾t ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ) ∈ Conn ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑆 ) |
| 79 | 33 43 77 78 | syl3anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑧 ∈ 𝑋 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) “ 𝑆 ) ⊆ 𝑆 ) |
| 80 | 21 79 | eqsstrrid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑆 ) |
| 81 | ovex | ⊢ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ V | |
| 82 | 81 38 | fnmpti | ⊢ ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) Fn 𝑆 |
| 83 | df-f | ⊢ ( ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ↔ ( ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) Fn 𝑆 ∧ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑆 ) ) | |
| 84 | 82 83 | mpbiran | ⊢ ( ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ↔ ran ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) ⊆ 𝑆 ) |
| 85 | 80 84 | sylibr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ) |
| 86 | 38 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ↔ ( 𝑧 ∈ 𝑆 ↦ ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ) : 𝑆 ⟶ 𝑆 ) |
| 87 | 85 86 | sylibr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 88 | 87 | ralrimiva | ⊢ ( 𝐺 ∈ TopGrp → ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 89 | 1 28 | issubg4 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 90 | 11 89 | syl | ⊢ ( 𝐺 ∈ TopGrp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝑆 ∀ 𝑧 ∈ 𝑆 ( 𝑦 ( -g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 91 | 9 16 88 90 | mpbir3and | ⊢ ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 92 | 11 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝐺 ∈ Grp ) |
| 93 | eqid | ⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) | |
| 94 | 93 46 | oppginv | ⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) = ( invg ‘ ( oppg ‘ 𝐺 ) ) ) |
| 95 | 92 94 | syl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( invg ‘ 𝐺 ) = ( invg ‘ ( oppg ‘ 𝐺 ) ) ) |
| 96 | 95 | fveq1d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 97 | simprll | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝑦 ∈ 𝑋 ) | |
| 98 | 1 46 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 99 | 92 97 98 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 100 | 96 99 | eqtr3d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) = 𝑦 ) |
| 101 | 100 | oveq1d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) = ( 𝑦 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ) |
| 102 | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝐺 ) ) = ( +g ‘ ( oppg ‘ 𝐺 ) ) | |
| 103 | 45 93 102 | oppgplus | ⊢ ( 𝑦 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) |
| 104 | 101 103 | eqtrdi | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 105 | 1 46 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 106 | 92 97 105 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) |
| 107 | simprlr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → 𝑧 ∈ 𝑋 ) | |
| 108 | 99 | oveq1d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
| 109 | simprr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) | |
| 110 | 108 109 | eqeltrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) |
| 111 | eqid | ⊢ ( 𝐺 ~QG 𝑆 ) = ( 𝐺 ~QG 𝑆 ) | |
| 112 | 1 46 45 111 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 113 | 92 8 112 | sylancl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 114 | 106 107 110 113 | mpbir3and | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ) |
| 115 | 1 2 3 4 111 | tgpconncompeqg | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 116 | 106 115 | syldan | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 117 | 93 | oppgtgp | ⊢ ( 𝐺 ∈ TopGrp → ( oppg ‘ 𝐺 ) ∈ TopGrp ) |
| 118 | 117 | adantr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( oppg ‘ 𝐺 ) ∈ TopGrp ) |
| 119 | 93 1 | oppgbas | ⊢ 𝑋 = ( Base ‘ ( oppg ‘ 𝐺 ) ) |
| 120 | 93 2 | oppgid | ⊢ 0 = ( 0g ‘ ( oppg ‘ 𝐺 ) ) |
| 121 | 93 3 | oppgtopn | ⊢ 𝐽 = ( TopOpen ‘ ( oppg ‘ 𝐺 ) ) |
| 122 | eqid | ⊢ ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) = ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) | |
| 123 | 119 120 121 4 122 | tgpconncompeqg | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ TopGrp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 124 | 118 106 123 | syl2anc | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 125 | 116 124 | eqtr4d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) ) |
| 126 | 125 | eleq2d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) ↔ 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) ) ) |
| 127 | vex | ⊢ 𝑧 ∈ V | |
| 128 | fvex | ⊢ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ V | |
| 129 | 127 128 | elec | ⊢ ( 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( 𝐺 ~QG 𝑆 ) ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ) |
| 130 | 127 128 | elec | ⊢ ( 𝑧 ∈ [ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ] ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ) |
| 131 | 126 129 130 | 3bitr3g | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( 𝐺 ~QG 𝑆 ) 𝑧 ↔ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ) ) |
| 132 | 114 131 | mpbid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ) |
| 133 | eqid | ⊢ ( invg ‘ ( oppg ‘ 𝐺 ) ) = ( invg ‘ ( oppg ‘ 𝐺 ) ) | |
| 134 | 119 133 102 122 | eqgval | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ TopGrp ∧ 𝑆 ⊆ 𝑋 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 135 | 118 8 134 | sylancl | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ( ( oppg ‘ 𝐺 ) ~QG 𝑆 ) 𝑧 ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) ) |
| 136 | 132 135 | mpbid | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) ) |
| 137 | 136 | simp3d | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( ( ( invg ‘ ( oppg ‘ 𝐺 ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑧 ) ∈ 𝑆 ) |
| 138 | 104 137 | eqeltrrd | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 ) ) → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
| 139 | 138 | expr | ⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 140 | 139 | ralrimivva | ⊢ ( 𝐺 ∈ TopGrp → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
| 141 | 1 45 | isnsg2 | ⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑆 → ( 𝑧 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 142 | 91 140 141 | sylanbrc | ⊢ ( 𝐺 ∈ TopGrp → 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ) |