This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | connima.x | ⊢ 𝑋 = ∪ 𝐽 | |
| connima.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| connima.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | ||
| connima.c | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ Conn ) | ||
| Assertion | connima | ⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Conn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connima.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | connima.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | connima.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | |
| 4 | connima.c | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ Conn ) | |
| 5 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 6 | 1 5 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 8 | 7 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 9 | 7 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 10 | 3 9 | sseqtrrd | ⊢ ( 𝜑 → 𝐴 ⊆ dom 𝐹 ) |
| 11 | fores | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ) |
| 13 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 14 | 2 13 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 15 | imassrn | ⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 | |
| 16 | 7 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐾 ) |
| 17 | 15 16 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) |
| 18 | 5 | restuni | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( 𝐹 “ 𝐴 ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) |
| 19 | 14 17 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 “ 𝐴 ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) |
| 20 | foeq3 | ⊢ ( ( 𝐹 “ 𝐴 ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ( 𝐹 “ 𝐴 ) ↔ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) |
| 22 | 12 21 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) |
| 23 | 1 | cnrest | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
| 24 | 2 3 23 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) |
| 25 | toptopon2 | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) | |
| 26 | 14 25 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 27 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 28 | eqimss2 | ⊢ ( ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) → ran ( 𝐹 ↾ 𝐴 ) ⊆ ( 𝐹 “ 𝐴 ) ) | |
| 29 | 27 28 | mp1i | ⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝐴 ) ⊆ ( 𝐹 “ 𝐴 ) ) |
| 30 | cnrest2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran ( 𝐹 ↾ 𝐴 ) ⊆ ( 𝐹 “ 𝐴 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) ) | |
| 31 | 26 29 17 30 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) ) |
| 32 | 24 31 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) |
| 33 | eqid | ⊢ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) = ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) | |
| 34 | 33 | cnconn | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Conn ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ ∪ ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∧ ( 𝐹 ↾ 𝐴 ) ∈ ( ( 𝐽 ↾t 𝐴 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ) ) → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Conn ) |
| 35 | 4 22 32 34 | syl3anc | ⊢ ( 𝜑 → ( 𝐾 ↾t ( 𝐹 “ 𝐴 ) ) ∈ Conn ) |