This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left group action of element A of group G maps the underlying set X of G one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008) (Proof shortened by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| grplact.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grplactcnv.4 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | grplactcnv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | ⊢ 𝐹 = ( 𝑔 ∈ 𝑋 ↦ ( 𝑎 ∈ 𝑋 ↦ ( 𝑔 + 𝑎 ) ) ) | |
| 2 | grplact.2 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | grplact.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | grplactcnv.4 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) | |
| 6 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → ( 𝐴 + 𝑎 ) ∈ 𝑋 ) |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝐴 + 𝑎 ) ∈ 𝑋 ) |
| 8 | 2 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
| 9 | 2 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ∈ 𝑋 ) |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ∈ 𝑋 ) |
| 11 | 8 10 | syldanl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ∈ 𝑋 ) |
| 12 | eqcom | ⊢ ( 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ↔ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = 𝑎 ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 14 | 2 3 13 4 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) + 𝑎 ) = ( ( 0g ‘ 𝐺 ) + 𝑎 ) ) |
| 17 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐺 ∈ Grp ) | |
| 18 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) |
| 19 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 20 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ 𝑋 ) | |
| 21 | 2 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) + 𝑎 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) |
| 22 | 17 18 19 20 21 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝐴 ) + 𝑎 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) |
| 23 | 2 3 13 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑎 ∈ 𝑋 ) → ( ( 0g ‘ 𝐺 ) + 𝑎 ) = 𝑎 ) |
| 24 | 23 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑎 ) = 𝑎 ) |
| 25 | 16 22 24 | 3eqtr3rd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) |
| 26 | 25 | eqeq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = 𝑎 ↔ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) ) |
| 27 | 12 26 | bitrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ↔ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ) ) |
| 28 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ 𝑋 ) | |
| 29 | 7 | adantrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐴 + 𝑎 ) ∈ 𝑋 ) |
| 30 | 2 3 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑏 ∈ 𝑋 ∧ ( 𝐴 + 𝑎 ) ∈ 𝑋 ∧ ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ↔ 𝑏 = ( 𝐴 + 𝑎 ) ) ) |
| 31 | 17 28 29 18 30 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) = ( ( 𝐼 ‘ 𝐴 ) + ( 𝐴 + 𝑎 ) ) ↔ 𝑏 = ( 𝐴 + 𝑎 ) ) ) |
| 32 | 27 31 | bitrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ↔ 𝑏 = ( 𝐴 + 𝑎 ) ) ) |
| 33 | 5 7 11 32 | f1ocnv2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) ) |
| 34 | 1 2 | grplactfval | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) = ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
| 36 | 35 | f1oeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ↔ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) : 𝑋 –1-1-onto→ 𝑋 ) ) |
| 37 | 35 | cnveqd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( 𝐹 ‘ 𝐴 ) = ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) ) |
| 38 | 1 2 | grplactfval | ⊢ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑎 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑎 ) ) ) |
| 39 | oveq2 | ⊢ ( 𝑎 = 𝑏 → ( ( 𝐼 ‘ 𝐴 ) + 𝑎 ) = ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) | |
| 40 | 39 | cbvmptv | ⊢ ( 𝑎 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) |
| 41 | 38 40 | eqtrdi | ⊢ ( ( 𝐼 ‘ 𝐴 ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) |
| 42 | 8 41 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) |
| 43 | 37 42 | eqeq12d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) ↔ ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) ) |
| 44 | 36 43 | anbi12d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ↔ ( ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝑎 ∈ 𝑋 ↦ ( 𝐴 + 𝑎 ) ) = ( 𝑏 ∈ 𝑋 ↦ ( ( 𝐼 ‘ 𝐴 ) + 𝑏 ) ) ) ) ) |
| 45 | 33 44 | mpbird | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ ( 𝐼 ‘ 𝐴 ) ) ) ) |