This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The connected component containing A is a superset of any other connected set containing A . (Contributed by Mario Carneiro, 19-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| Assertion | conncompss | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ⊆ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncomp.2 | ⊢ 𝑆 = ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } | |
| 2 | simp1 | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ⊆ 𝑋 ) | |
| 3 | conntop | ⊢ ( ( 𝐽 ↾t 𝑇 ) ∈ Conn → ( 𝐽 ↾t 𝑇 ) ∈ Top ) | |
| 4 | 3 | 3ad2ant3 | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → ( 𝐽 ↾t 𝑇 ) ∈ Top ) |
| 5 | restrcl | ⊢ ( ( 𝐽 ↾t 𝑇 ) ∈ Top → ( 𝐽 ∈ V ∧ 𝑇 ∈ V ) ) | |
| 6 | 5 | simprd | ⊢ ( ( 𝐽 ↾t 𝑇 ) ∈ Top → 𝑇 ∈ V ) |
| 7 | elpwg | ⊢ ( 𝑇 ∈ V → ( 𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋 ) ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → ( 𝑇 ∈ 𝒫 𝑋 ↔ 𝑇 ⊆ 𝑋 ) ) |
| 9 | 2 8 | mpbird | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ∈ 𝒫 𝑋 ) |
| 10 | 3simpc | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → ( 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) | |
| 11 | eleq2 | ⊢ ( 𝑦 = 𝑇 → ( 𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑇 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑦 = 𝑇 → ( 𝐽 ↾t 𝑦 ) = ( 𝐽 ↾t 𝑇 ) ) | |
| 13 | 12 | eleq1d | ⊢ ( 𝑦 = 𝑇 → ( ( 𝐽 ↾t 𝑦 ) ∈ Conn ↔ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) |
| 14 | 11 13 | anbi12d | ⊢ ( 𝑦 = 𝑇 → ( ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ↔ ( 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) ) |
| 15 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐽 ↾t 𝑥 ) = ( 𝐽 ↾t 𝑦 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐽 ↾t 𝑥 ) ∈ Conn ↔ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) ↔ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) ) ) |
| 19 | 18 | cbvrabv | ⊢ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } = { 𝑦 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑦 ∧ ( 𝐽 ↾t 𝑦 ) ∈ Conn ) } |
| 20 | 14 19 | elrab2 | ⊢ ( 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ↔ ( 𝑇 ∈ 𝒫 𝑋 ∧ ( 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) ) ) |
| 21 | 9 10 20 | sylanbrc | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 22 | elssuni | ⊢ ( 𝑇 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } → 𝑇 ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ⊆ ∪ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝐴 ∈ 𝑥 ∧ ( 𝐽 ↾t 𝑥 ) ∈ Conn ) } ) |
| 24 | 23 1 | sseqtrrdi | ⊢ ( ( 𝑇 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑇 ∧ ( 𝐽 ↾t 𝑇 ) ∈ Conn ) → 𝑇 ⊆ 𝑆 ) |