This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left coset can be expressed as the image of a left action. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | ||
| eqglact.3 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | eqglact | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqger.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | eqger.r | ⊢ ∼ = ( 𝐺 ~QG 𝑌 ) | |
| 3 | eqglact.3 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 5 | 1 4 3 2 | eqgval | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) |
| 6 | 3anass | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) | |
| 7 | 5 6 | bitrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) ) |
| 8 | 7 | baibd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) ) ) |
| 10 | 9 | abbidv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∣ 𝐴 ∼ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } ) |
| 11 | dfec2 | ⊢ ( 𝐴 ∈ 𝑋 → [ 𝐴 ] ∼ = { 𝑥 ∣ 𝐴 ∼ 𝑥 } ) | |
| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = { 𝑥 ∣ 𝐴 ∼ 𝑥 } ) |
| 13 | eqid | ⊢ ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) = ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) | |
| 14 | 13 1 3 4 | grplactcnv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) : 𝑋 –1-1-onto→ 𝑋 ∧ ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) ) |
| 15 | 14 | simprd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| 16 | 13 1 | grplactfval | ⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
| 18 | 17 | cnveqd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ 𝐴 ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) ) |
| 19 | 1 4 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 ) |
| 20 | 13 1 | grplactfval | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ∈ 𝑋 → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 21 | 19 20 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑔 ∈ 𝑋 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑔 + 𝑥 ) ) ) ‘ ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 22 | 15 18 21 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 23 | 22 | cnveqd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 24 | 23 | 3adant2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) = ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) ) |
| 25 | 24 | imaeq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) = ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) “ 𝑌 ) ) |
| 26 | imacnvcnv | ⊢ ( ◡ ◡ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) | |
| 27 | eqid | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) | |
| 28 | 27 | mptpreima | ⊢ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) “ 𝑌 ) = { 𝑥 ∈ 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 } |
| 29 | df-rab | ⊢ { 𝑥 ∈ 𝑋 ∣ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } | |
| 30 | 28 29 | eqtri | ⊢ ( ◡ ( 𝑥 ∈ 𝑋 ↦ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ) “ 𝑌 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } |
| 31 | 25 26 30 | 3eqtr3g | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝑋 ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝐴 ) + 𝑥 ) ∈ 𝑌 ) } ) |
| 32 | 10 12 31 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → [ 𝐴 ] ∼ = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 + 𝑥 ) ) “ 𝑌 ) ) |