This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is a bijection from the squarefree divisors of a number N to the powerset of the prime divisors of N . Among other things, this implies that a number has 2 ^ k squarefree divisors where k is the number of prime divisors, and a squarefree number has 2 ^ k divisors (because all divisors of a squarefree number are squarefree). The inverse function to F takes the product of all the primes in some subset of prime divisors of N . (Contributed by Mario Carneiro, 1-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqff1o.1 | ⊢ 𝑆 = { 𝑥 ∈ ℕ ∣ ( ( μ ‘ 𝑥 ) ≠ 0 ∧ 𝑥 ∥ 𝑁 ) } | |
| sqff1o.2 | ⊢ 𝐹 = ( 𝑛 ∈ 𝑆 ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) | ||
| sqff1o.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | ||
| Assertion | sqff1o | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝑆 –1-1-onto→ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqff1o.1 | ⊢ 𝑆 = { 𝑥 ∈ ℕ ∣ ( ( μ ‘ 𝑥 ) ≠ 0 ∧ 𝑥 ∥ 𝑁 ) } | |
| 2 | sqff1o.2 | ⊢ 𝐹 = ( 𝑛 ∈ 𝑆 ↦ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) | |
| 3 | sqff1o.3 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑛 → ( μ ‘ 𝑥 ) = ( μ ‘ 𝑛 ) ) | |
| 5 | 4 | neeq1d | ⊢ ( 𝑥 = 𝑛 → ( ( μ ‘ 𝑥 ) ≠ 0 ↔ ( μ ‘ 𝑛 ) ≠ 0 ) ) |
| 6 | breq1 | ⊢ ( 𝑥 = 𝑛 → ( 𝑥 ∥ 𝑁 ↔ 𝑛 ∥ 𝑁 ) ) | |
| 7 | 5 6 | anbi12d | ⊢ ( 𝑥 = 𝑛 → ( ( ( μ ‘ 𝑥 ) ≠ 0 ∧ 𝑥 ∥ 𝑁 ) ↔ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) |
| 8 | 7 1 | elrab2 | ⊢ ( 𝑛 ∈ 𝑆 ↔ ( 𝑛 ∈ ℕ ∧ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) |
| 9 | 8 | simprbi | ⊢ ( 𝑛 ∈ 𝑆 → ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) |
| 10 | 9 | simprd | ⊢ ( 𝑛 ∈ 𝑆 → 𝑛 ∥ 𝑁 ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∥ 𝑁 ) |
| 12 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 14 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ 𝑆 ) | |
| 15 | 14 8 | sylib | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑛 ∈ ℕ ∧ ( ( μ ‘ 𝑛 ) ≠ 0 ∧ 𝑛 ∥ 𝑁 ) ) ) |
| 16 | 15 | simpld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ ℕ ) |
| 17 | 16 | nnzd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑛 ∈ ℤ ) |
| 18 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
| 20 | dvdstr | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑝 ∥ 𝑛 ∧ 𝑛 ∥ 𝑁 ) → 𝑝 ∥ 𝑁 ) ) | |
| 21 | 13 17 19 20 | syl3anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑛 ∧ 𝑛 ∥ 𝑁 ) → 𝑝 ∥ 𝑁 ) ) |
| 22 | 11 21 | mpan2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑛 → 𝑝 ∥ 𝑁 ) ) |
| 23 | 22 | ss2rabdv | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 24 | prmex | ⊢ ℙ ∈ V | |
| 25 | 24 | rabex | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ∈ V |
| 26 | 25 | elpw | ⊢ ( { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ↔ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 27 | 23 26 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 28 | cnveq | ⊢ ( 𝑦 = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) → ◡ 𝑦 = ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) | |
| 29 | 28 | imaeq1d | ⊢ ( 𝑦 = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) → ( ◡ 𝑦 “ ℕ ) = ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ) |
| 30 | 29 | eleq1d | ⊢ ( 𝑦 = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) → ( ( ◡ 𝑦 “ ℕ ) ∈ Fin ↔ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) ) |
| 31 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 32 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 33 | 31 32 | ifcli | ⊢ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
| 34 | 33 | rgenw | ⊢ ∀ 𝑘 ∈ ℙ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
| 35 | eqid | ⊢ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) | |
| 36 | 35 | fmpt | ⊢ ( ∀ 𝑘 ∈ ℙ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 ↔ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 ) |
| 37 | 34 36 | mpbi | ⊢ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 |
| 38 | 37 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 ) |
| 39 | nn0ex | ⊢ ℕ0 ∈ V | |
| 40 | 39 24 | elmap | ⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ ( ℕ0 ↑m ℙ ) ↔ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 ) |
| 41 | 38 40 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ ( ℕ0 ↑m ℙ ) ) |
| 42 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 43 | ffn | ⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) : ℙ ⟶ ℕ0 → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) Fn ℙ ) | |
| 44 | elpreima | ⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) Fn ℙ → ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ↔ ( 𝑥 ∈ ℙ ∧ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ) ) ) | |
| 45 | 37 43 44 | mp2b | ⊢ ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ↔ ( 𝑥 ∈ ℙ ∧ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ) ) |
| 46 | elequ1 | ⊢ ( 𝑘 = 𝑥 → ( 𝑘 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 47 | 46 | ifbid | ⊢ ( 𝑘 = 𝑥 → if ( 𝑘 ∈ 𝑧 , 1 , 0 ) = if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ) |
| 48 | 31 32 | ifcli | ⊢ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
| 49 | 48 | elexi | ⊢ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ V |
| 50 | 47 35 49 | fvmpt | ⊢ ( 𝑥 ∈ ℙ → ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ) |
| 51 | 50 | eleq1d | ⊢ ( 𝑥 ∈ ℙ → ( ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ↔ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) ) |
| 52 | 51 | biimpa | ⊢ ( ( 𝑥 ∈ ℙ ∧ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑥 ) ∈ ℕ ) → if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) |
| 53 | 45 52 | sylbi | ⊢ ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) → if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) |
| 54 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 55 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝑧 → if ( 𝑥 ∈ 𝑧 , 1 , 0 ) = 0 ) | |
| 56 | 55 | eleq1d | ⊢ ( ¬ 𝑥 ∈ 𝑧 → ( if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ↔ 0 ∈ ℕ ) ) |
| 57 | 54 56 | mtbiri | ⊢ ( ¬ 𝑥 ∈ 𝑧 → ¬ if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ ) |
| 58 | 57 | con4i | ⊢ ( if ( 𝑥 ∈ 𝑧 , 1 , 0 ) ∈ ℕ → 𝑥 ∈ 𝑧 ) |
| 59 | 53 58 | syl | ⊢ ( 𝑥 ∈ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) → 𝑥 ∈ 𝑧 ) |
| 60 | 59 | ssriv | ⊢ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ⊆ 𝑧 |
| 61 | elpwi | ⊢ ( 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } → 𝑧 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) | |
| 62 | 61 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑧 ⊆ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 63 | prmssnn | ⊢ ℙ ⊆ ℕ | |
| 64 | rabss2 | ⊢ ( ℙ ⊆ ℕ → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } ) | |
| 65 | 63 64 | ax-mp | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } |
| 66 | dvdsssfz1 | ⊢ ( 𝑁 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) | |
| 67 | 66 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 68 | 65 67 | sstrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ ( 1 ... 𝑁 ) ) |
| 69 | 62 68 | sstrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑧 ⊆ ( 1 ... 𝑁 ) ) |
| 70 | 60 69 | sstrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ⊆ ( 1 ... 𝑁 ) ) |
| 71 | ssfi | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ⊆ ( 1 ... 𝑁 ) ) → ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) | |
| 72 | 42 70 71 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) “ ℕ ) ∈ Fin ) |
| 73 | 30 41 72 | elrabd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) |
| 74 | eqid | ⊢ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } = { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } | |
| 75 | 3 74 | 1arith | ⊢ 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } |
| 76 | f1ocnv | ⊢ ( 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } → ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } –1-1-onto→ ℕ ) | |
| 77 | f1of | ⊢ ( ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } –1-1-onto→ ℕ → ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ⟶ ℕ ) | |
| 78 | 75 76 77 | mp2b | ⊢ ◡ 𝐺 : { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ⟶ ℕ |
| 79 | 78 | ffvelcdmi | ⊢ ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ ) |
| 80 | 73 79 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ ) |
| 81 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ∧ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) | |
| 82 | 75 73 81 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) |
| 83 | 3 | 1arithlem1 | ⊢ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ) |
| 84 | 80 83 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ) |
| 85 | 82 84 | eqtr3d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ) |
| 86 | 85 | fveq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑞 ) = ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) ) |
| 87 | elequ1 | ⊢ ( 𝑘 = 𝑞 → ( 𝑘 ∈ 𝑧 ↔ 𝑞 ∈ 𝑧 ) ) | |
| 88 | 87 | ifbid | ⊢ ( 𝑘 = 𝑞 → if ( 𝑘 ∈ 𝑧 , 1 , 0 ) = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ) |
| 89 | 31 32 | ifcli | ⊢ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ∈ ℕ0 |
| 90 | 89 | elexi | ⊢ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ∈ V |
| 91 | 88 35 90 | fvmpt | ⊢ ( 𝑞 ∈ ℙ → ( ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ‘ 𝑞 ) = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ) |
| 92 | 86 91 | sylan9req | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ) |
| 93 | oveq1 | ⊢ ( 𝑝 = 𝑞 → ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) | |
| 94 | eqid | ⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) | |
| 95 | ovex | ⊢ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ∈ V | |
| 96 | 93 94 95 | fvmpt | ⊢ ( 𝑞 ∈ ℙ → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
| 97 | 96 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) ‘ 𝑞 ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
| 98 | 92 97 | eqtr3d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
| 99 | breq1 | ⊢ ( 1 = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) → ( 1 ≤ 1 ↔ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ 1 ) ) | |
| 100 | breq1 | ⊢ ( 0 = if ( 𝑞 ∈ 𝑧 , 1 , 0 ) → ( 0 ≤ 1 ↔ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ 1 ) ) | |
| 101 | 1le1 | ⊢ 1 ≤ 1 | |
| 102 | 0le1 | ⊢ 0 ≤ 1 | |
| 103 | 99 100 101 102 | keephyp | ⊢ if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ 1 |
| 104 | 98 103 | eqbrtrrdi | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) |
| 105 | 104 | ralrimiva | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) |
| 106 | issqf | ⊢ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ → ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) ) | |
| 107 | 80 106 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ 1 ) ) |
| 108 | 105 107 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ) |
| 109 | iftrue | ⊢ ( 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = 1 ) | |
| 110 | 109 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = 1 ) |
| 111 | 62 | sselda | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑞 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |
| 112 | breq1 | ⊢ ( 𝑝 = 𝑞 → ( 𝑝 ∥ 𝑁 ↔ 𝑞 ∥ 𝑁 ) ) | |
| 113 | 112 | elrab | ⊢ ( 𝑞 ∈ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ↔ ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑁 ) ) |
| 114 | 111 113 | sylib | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑁 ) ) |
| 115 | 114 | simprd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑞 ∥ 𝑁 ) |
| 116 | 114 | simpld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑞 ∈ ℙ ) |
| 117 | simpll | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 𝑁 ∈ ℕ ) | |
| 118 | pcelnn | ⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑞 pCnt 𝑁 ) ∈ ℕ ↔ 𝑞 ∥ 𝑁 ) ) | |
| 119 | 116 117 118 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → ( ( 𝑞 pCnt 𝑁 ) ∈ ℕ ↔ 𝑞 ∥ 𝑁 ) ) |
| 120 | 115 119 | mpbird | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → ( 𝑞 pCnt 𝑁 ) ∈ ℕ ) |
| 121 | 120 | nnge1d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → 1 ≤ ( 𝑞 pCnt 𝑁 ) ) |
| 122 | 110 121 | eqbrtrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ 𝑧 ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
| 123 | 122 | ex | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
| 124 | 123 | adantr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
| 125 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → 𝑞 ∈ ℙ ) | |
| 126 | 18 | ad2antrr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
| 127 | pcge0 | ⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑞 pCnt 𝑁 ) ) | |
| 128 | 125 126 127 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → 0 ≤ ( 𝑞 pCnt 𝑁 ) ) |
| 129 | iffalse | ⊢ ( ¬ 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) = 0 ) | |
| 130 | 129 | breq1d | ⊢ ( ¬ 𝑞 ∈ 𝑧 → ( if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ↔ 0 ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
| 131 | 128 130 | syl5ibrcom | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( ¬ 𝑞 ∈ 𝑧 → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
| 132 | 124 131 | pm2.61d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → if ( 𝑞 ∈ 𝑧 , 1 , 0 ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
| 133 | 98 132 | eqbrtrrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
| 134 | 133 | ralrimiva | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) |
| 135 | 80 | nnzd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℤ ) |
| 136 | 18 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → 𝑁 ∈ ℤ ) |
| 137 | pc2dvds | ⊢ ( ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) | |
| 138 | 135 136 137 | syl2anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ↔ ∀ 𝑞 ∈ ℙ ( 𝑞 pCnt ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≤ ( 𝑞 pCnt 𝑁 ) ) ) |
| 139 | 134 138 | mpbird | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) |
| 140 | 108 139 | jca | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ∧ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) |
| 141 | fveq2 | ⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( μ ‘ 𝑥 ) = ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) | |
| 142 | 141 | neeq1d | ⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( ( μ ‘ 𝑥 ) ≠ 0 ↔ ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ) ) |
| 143 | breq1 | ⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( 𝑥 ∥ 𝑁 ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) | |
| 144 | 142 143 | anbi12d | ⊢ ( 𝑥 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) → ( ( ( μ ‘ 𝑥 ) ≠ 0 ∧ 𝑥 ∥ 𝑁 ) ↔ ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ∧ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) ) |
| 145 | 144 1 | elrab2 | ⊢ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ 𝑆 ↔ ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ ℕ ∧ ( ( μ ‘ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ≠ 0 ∧ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∥ 𝑁 ) ) ) |
| 146 | 80 140 145 | sylanbrc | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) → ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ∈ 𝑆 ) |
| 147 | eqcom | ⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ) | |
| 148 | 8 | simplbi | ⊢ ( 𝑛 ∈ 𝑆 → 𝑛 ∈ ℕ ) |
| 149 | 148 | ad2antrl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑛 ∈ ℕ ) |
| 150 | 24 | mptex | ⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ V |
| 151 | 3 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ V ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
| 152 | 149 150 151 | sylancl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) |
| 153 | 152 | eqeq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝐺 ‘ 𝑛 ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) |
| 154 | 75 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) |
| 155 | 73 | adantrl | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) |
| 156 | f1ocnvfvb | ⊢ ( ( 𝐺 : ℕ –1-1-onto→ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ∧ 𝑛 ∈ ℕ ∧ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ∈ { 𝑦 ∈ ( ℕ0 ↑m ℙ ) ∣ ( ◡ 𝑦 “ ℕ ) ∈ Fin } ) → ( ( 𝐺 ‘ 𝑛 ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ) ) | |
| 157 | 154 149 155 156 | syl3anc | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝐺 ‘ 𝑛 ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ) ) |
| 158 | 24 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ℙ ∈ V ) |
| 159 | 0cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 0 ∈ ℂ ) | |
| 160 | 1cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 1 ∈ ℂ ) | |
| 161 | 0ne1 | ⊢ 0 ≠ 1 | |
| 162 | 161 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 0 ≠ 1 ) |
| 163 | 158 159 160 162 | pw2f1olem | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑧 ∈ 𝒫 ℙ ∧ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ↔ ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ∧ 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ) ) ) |
| 164 | ssrab2 | ⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ ℙ | |
| 165 | 164 | sspwi | ⊢ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ⊆ 𝒫 ℙ |
| 166 | simprr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) | |
| 167 | 165 166 | sselid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → 𝑧 ∈ 𝒫 ℙ ) |
| 168 | 167 | biantrurd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ ( 𝑧 ∈ 𝒫 ℙ ∧ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ) ) |
| 169 | id | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) | |
| 170 | 148 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → 𝑛 ∈ ℕ ) |
| 171 | pccl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑝 pCnt 𝑛 ) ∈ ℕ0 ) | |
| 172 | 169 170 171 | syl2anr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑛 ) ∈ ℕ0 ) |
| 173 | elnn0 | ⊢ ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ0 ↔ ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝑛 ) = 0 ) ) | |
| 174 | 172 173 | sylib | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ∨ ( 𝑝 pCnt 𝑛 ) = 0 ) ) |
| 175 | 174 | orcomd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) ) |
| 176 | 9 | simpld | ⊢ ( 𝑛 ∈ 𝑆 → ( μ ‘ 𝑛 ) ≠ 0 ) |
| 177 | 176 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ( μ ‘ 𝑛 ) ≠ 0 ) |
| 178 | issqf | ⊢ ( 𝑛 ∈ ℕ → ( ( μ ‘ 𝑛 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑛 ) ≤ 1 ) ) | |
| 179 | 170 178 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ( ( μ ‘ 𝑛 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑛 ) ≤ 1 ) ) |
| 180 | 177 179 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝑛 ) ≤ 1 ) |
| 181 | 180 | r19.21bi | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑛 ) ≤ 1 ) |
| 182 | nnle1eq1 | ⊢ ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ → ( ( 𝑝 pCnt 𝑛 ) ≤ 1 ↔ ( 𝑝 pCnt 𝑛 ) = 1 ) ) | |
| 183 | 181 182 | syl5ibcom | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ → ( 𝑝 pCnt 𝑛 ) = 1 ) ) |
| 184 | 183 | orim2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) → ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) = 1 ) ) ) |
| 185 | 175 184 | mpd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) = 1 ) ) |
| 186 | ovex | ⊢ ( 𝑝 pCnt 𝑛 ) ∈ V | |
| 187 | 186 | elpr | ⊢ ( ( 𝑝 pCnt 𝑛 ) ∈ { 0 , 1 } ↔ ( ( 𝑝 pCnt 𝑛 ) = 0 ∨ ( 𝑝 pCnt 𝑛 ) = 1 ) ) |
| 188 | 185 187 | sylibr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝑛 ) ∈ { 0 , 1 } ) |
| 189 | 188 | fmpttd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) : ℙ ⟶ { 0 , 1 } ) |
| 190 | 189 | adantrr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) : ℙ ⟶ { 0 , 1 } ) |
| 191 | prex | ⊢ { 0 , 1 } ∈ V | |
| 192 | 191 24 | elmap | ⊢ ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ↔ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) : ℙ ⟶ { 0 , 1 } ) |
| 193 | 190 192 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ) |
| 194 | 193 | biantrurd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ↔ ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ∈ ( { 0 , 1 } ↑m ℙ ) ∧ 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ) ) ) |
| 195 | 163 168 194 | 3bitr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ) ) |
| 196 | eqid | ⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) | |
| 197 | 196 | mptiniseg | ⊢ ( 1 ∈ ℕ0 → ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } ) |
| 198 | 31 197 | ax-mp | ⊢ ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) = { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } |
| 199 | id | ⊢ ( ( 𝑝 pCnt 𝑛 ) = 1 → ( 𝑝 pCnt 𝑛 ) = 1 ) | |
| 200 | 1nn | ⊢ 1 ∈ ℕ | |
| 201 | 199 200 | eqeltrdi | ⊢ ( ( 𝑝 pCnt 𝑛 ) = 1 → ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) |
| 202 | 201 183 | impbid2 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 1 ↔ ( 𝑝 pCnt 𝑛 ) ∈ ℕ ) ) |
| 203 | simpr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) | |
| 204 | pcelnn | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ↔ 𝑝 ∥ 𝑛 ) ) | |
| 205 | 203 16 204 | syl2anc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) ∈ ℕ ↔ 𝑝 ∥ 𝑛 ) ) |
| 206 | 202 205 | bitrd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝑛 ) = 1 ↔ 𝑝 ∥ 𝑛 ) ) |
| 207 | 206 | rabbidva | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ 𝑆 ) → { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) |
| 208 | 207 | adantrr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → { 𝑝 ∈ ℙ ∣ ( 𝑝 pCnt 𝑛 ) = 1 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) |
| 209 | 198 208 | eqtrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) |
| 210 | 209 | eqeq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑧 = ( ◡ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) “ { 1 } ) ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
| 211 | 195 210 | bitrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) = ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
| 212 | 153 157 211 | 3bitr3d | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) = 𝑛 ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
| 213 | 147 212 | bitrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑛 ∈ 𝑆 ∧ 𝑧 ∈ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) ) → ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑘 ∈ ℙ ↦ if ( 𝑘 ∈ 𝑧 , 1 , 0 ) ) ) ↔ 𝑧 = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑛 } ) ) |
| 214 | 2 27 146 213 | f1o2d | ⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝑆 –1-1-onto→ 𝒫 { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑁 } ) |