This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issqf | ⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsqf | ⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) | |
| 2 | 1 | necon3abid | ⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 3 | ralnex | ⊢ ( ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ↑ 2 ) ∥ 𝐴 ↔ ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) | |
| 4 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 5 | pccl | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) | |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
| 7 | nn0ltp1le | ⊢ ( ( 1 ∈ ℕ0 ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) → ( 1 < ( 𝑝 pCnt 𝐴 ) ↔ ( 1 + 1 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) | |
| 8 | 4 6 7 | sylancr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 1 < ( 𝑝 pCnt 𝐴 ) ↔ ( 1 + 1 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) |
| 9 | 1re | ⊢ 1 ∈ ℝ | |
| 10 | 6 | nn0red | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) |
| 11 | ltnle | ⊢ ( ( 1 ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) → ( 1 < ( 𝑝 pCnt 𝐴 ) ↔ ¬ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 1 < ( 𝑝 pCnt 𝐴 ) ↔ ¬ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) |
| 13 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 14 | 13 | breq1i | ⊢ ( 2 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 1 + 1 ) ≤ ( 𝑝 pCnt 𝐴 ) ) |
| 15 | id | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) | |
| 16 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 17 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 18 | pcdvdsb | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ0 ) → ( 2 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) | |
| 19 | 17 18 | mp3an3 | ⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 2 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 20 | 15 16 19 | syl2anr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 2 ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 21 | 14 20 | bitr3id | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 1 + 1 ) ≤ ( 𝑝 pCnt 𝐴 ) ↔ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 22 | 8 12 21 | 3bitr3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 pCnt 𝐴 ) ≤ 1 ↔ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 23 | 22 | con1bid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 ↑ 2 ) ∥ 𝐴 ↔ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) |
| 24 | 23 | ralbidva | ⊢ ( 𝐴 ∈ ℕ → ( ∀ 𝑝 ∈ ℙ ¬ ( 𝑝 ↑ 2 ) ∥ 𝐴 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) |
| 25 | 3 24 | bitr3id | ⊢ ( 𝐴 ∈ ℕ → ( ¬ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) |
| 26 | 2 25 | bitrd | ⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) ≠ 0 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ 1 ) ) |