This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsssfz1 | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑝 ∈ ℕ → 𝑝 ∈ ℤ ) | |
| 2 | id | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ ) | |
| 3 | dvdsle | ⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
| 5 | ibar | ⊢ ( 𝑝 ∈ ℕ → ( 𝑝 ≤ 𝐴 ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ≤ 𝐴 ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 7 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 9 | fznn | ⊢ ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 11 | 6 10 | bitr4d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ≤ 𝐴 ↔ 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
| 12 | 4 11 | sylibd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
| 13 | 12 | ralrimiva | ⊢ ( 𝐴 ∈ ℕ → ∀ 𝑝 ∈ ℕ ( 𝑝 ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
| 14 | rabss | ⊢ ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ↔ ∀ 𝑝 ∈ ℕ ( 𝑝 ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |