This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pw2f1o . (Contributed by Mario Carneiro, 6-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pw2f1o.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| pw2f1o.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| pw2f1o.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| pw2f1o.4 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | ||
| Assertion | pw2f1olem | ⊢ ( 𝜑 → ( ( 𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ↔ ( 𝐺 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw2f1o.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 2 | pw2f1o.2 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | pw2f1o.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 4 | pw2f1o.4 | ⊢ ( 𝜑 → 𝐵 ≠ 𝐶 ) | |
| 5 | prid2g | ⊢ ( 𝐶 ∈ 𝑊 → 𝐶 ∈ { 𝐵 , 𝐶 } ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐶 ∈ { 𝐵 , 𝐶 } ) |
| 7 | prid1g | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 , 𝐶 } ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 , 𝐶 } ) |
| 9 | 6 8 | ifcld | ⊢ ( 𝜑 → if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ∈ { 𝐵 , 𝐶 } ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ∈ { 𝐵 , 𝐶 } ) |
| 11 | 10 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) : 𝐴 ⟶ { 𝐵 , 𝐶 } ) |
| 12 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) : 𝐴 ⟶ { 𝐵 , 𝐶 } ) |
| 13 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) | |
| 14 | 13 | feq1d | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ↔ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) : 𝐴 ⟶ { 𝐵 , 𝐶 } ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ) |
| 16 | iftrue | ⊢ ( 𝑥 ∈ 𝑆 → if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐶 ) | |
| 17 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≠ 𝐶 ) |
| 18 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝑆 → if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐵 ) | |
| 19 | 18 | neeq1d | ⊢ ( ¬ 𝑥 ∈ 𝑆 → ( if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) ) |
| 20 | 17 19 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ 𝑆 → if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ≠ 𝐶 ) ) |
| 21 | 20 | necon4bd | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐶 → 𝑥 ∈ 𝑆 ) ) |
| 22 | 16 21 | impbid2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑆 ↔ if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐶 ) ) |
| 23 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) | |
| 24 | 23 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ‘ 𝑥 ) ) |
| 25 | id | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴 ) | |
| 26 | 6 8 | ifcld | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ∈ { 𝐵 , 𝐶 } ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ∈ { 𝐵 , 𝐶 } ) |
| 28 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑆 ↔ 𝑥 ∈ 𝑆 ) ) | |
| 29 | 28 | ifbid | ⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) = if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 30 | eqid | ⊢ ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) | |
| 31 | 29 30 | fvmptg | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ∈ { 𝐵 , 𝐶 } ) → ( ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 32 | 25 27 31 | syl2anr | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 33 | 24 32 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 34 | 33 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑥 ) = 𝐶 ↔ if ( 𝑥 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐶 ) ) |
| 35 | 22 34 | bitr4d | ⊢ ( ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑆 ↔ ( 𝐺 ‘ 𝑥 ) = 𝐶 ) ) |
| 36 | 35 | pm5.32da | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) = 𝐶 ) ) ) |
| 37 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → 𝑆 ⊆ 𝐴 ) | |
| 38 | 37 | sseld | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( 𝑥 ∈ 𝑆 → 𝑥 ∈ 𝐴 ) ) |
| 39 | 38 | pm4.71rd | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝑆 ) ) ) |
| 40 | ffn | ⊢ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } → 𝐺 Fn 𝐴 ) | |
| 41 | 15 40 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → 𝐺 Fn 𝐴 ) |
| 42 | fniniseg | ⊢ ( 𝐺 Fn 𝐴 → ( 𝑥 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) = 𝐶 ) ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑥 ) = 𝐶 ) ) ) |
| 44 | 36 39 43 | 3bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↔ 𝑥 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ) ) |
| 45 | 44 | eqrdv | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) |
| 46 | 15 45 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) → ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) |
| 47 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) | |
| 48 | cnvimass | ⊢ ( ◡ 𝐺 “ { 𝐶 } ) ⊆ dom 𝐺 | |
| 49 | fdm | ⊢ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } → dom 𝐺 = 𝐴 ) | |
| 50 | 49 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → dom 𝐺 = 𝐴 ) |
| 51 | 48 50 | sseqtrid | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → ( ◡ 𝐺 “ { 𝐶 } ) ⊆ 𝐴 ) |
| 52 | 47 51 | eqsstrd | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → 𝑆 ⊆ 𝐴 ) |
| 53 | 40 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → 𝐺 Fn 𝐴 ) |
| 54 | dffn5 | ⊢ ( 𝐺 Fn 𝐴 ↔ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 55 | 53 54 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → 𝐺 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑦 ) ) ) |
| 56 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) | |
| 57 | 56 | eleq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑆 ↔ 𝑦 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ) ) |
| 58 | fniniseg | ⊢ ( 𝐺 Fn 𝐴 → ( 𝑦 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑦 ) = 𝐶 ) ) ) | |
| 59 | 53 58 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → ( 𝑦 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( 𝑦 ∈ 𝐴 ∧ ( 𝐺 ‘ 𝑦 ) = 𝐶 ) ) ) |
| 60 | 59 | baibd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( ◡ 𝐺 “ { 𝐶 } ) ↔ ( 𝐺 ‘ 𝑦 ) = 𝐶 ) ) |
| 61 | 57 60 | bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ 𝑆 ↔ ( 𝐺 ‘ 𝑦 ) = 𝐶 ) ) |
| 62 | 61 | biimpa | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) = 𝐶 ) |
| 63 | iftrue | ⊢ ( 𝑦 ∈ 𝑆 → if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐶 ) | |
| 64 | 63 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) → if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐶 ) |
| 65 | 62 64 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 66 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ) | |
| 67 | 66 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) ∈ { 𝐵 , 𝐶 } ) |
| 68 | fvex | ⊢ ( 𝐺 ‘ 𝑦 ) ∈ V | |
| 69 | 68 | elpr | ⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ { 𝐵 , 𝐶 } ↔ ( ( 𝐺 ‘ 𝑦 ) = 𝐵 ∨ ( 𝐺 ‘ 𝑦 ) = 𝐶 ) ) |
| 70 | 67 69 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐺 ‘ 𝑦 ) = 𝐵 ∨ ( 𝐺 ‘ 𝑦 ) = 𝐶 ) ) |
| 71 | 70 | ord | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ ( 𝐺 ‘ 𝑦 ) = 𝐵 → ( 𝐺 ‘ 𝑦 ) = 𝐶 ) ) |
| 72 | 71 61 | sylibrd | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ ( 𝐺 ‘ 𝑦 ) = 𝐵 → 𝑦 ∈ 𝑆 ) ) |
| 73 | 72 | con1d | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ 𝑦 ∈ 𝑆 → ( 𝐺 ‘ 𝑦 ) = 𝐵 ) ) |
| 74 | 73 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) = 𝐵 ) |
| 75 | iffalse | ⊢ ( ¬ 𝑦 ∈ 𝑆 → if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐵 ) | |
| 76 | 75 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑆 ) → if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) = 𝐵 ) |
| 77 | 74 76 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 78 | 65 77 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 79 | 78 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → ( 𝑦 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) |
| 80 | 55 79 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) |
| 81 | 52 80 | jca | ⊢ ( ( 𝜑 ∧ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) → ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) |
| 82 | 46 81 | impbida | ⊢ ( 𝜑 → ( ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ↔ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ) |
| 83 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴 ) ) | |
| 84 | 1 83 | syl | ⊢ ( 𝜑 → ( 𝑆 ∈ 𝒫 𝐴 ↔ 𝑆 ⊆ 𝐴 ) ) |
| 85 | eleq1w | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆 ) ) | |
| 86 | 85 | ifbid | ⊢ ( 𝑧 = 𝑦 → if ( 𝑧 ∈ 𝑆 , 𝐶 , 𝐵 ) = if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 87 | 86 | cbvmptv | ⊢ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑆 , 𝐶 , 𝐵 ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) |
| 88 | 87 | a1i | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑆 , 𝐶 , 𝐵 ) ) = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) |
| 89 | 88 | eqeq2d | ⊢ ( 𝜑 → ( 𝐺 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ↔ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) |
| 90 | 84 89 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ↔ ( 𝑆 ⊆ 𝐴 ∧ 𝐺 = ( 𝑦 ∈ 𝐴 ↦ if ( 𝑦 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ) ) |
| 91 | prex | ⊢ { 𝐵 , 𝐶 } ∈ V | |
| 92 | elmapg | ⊢ ( ( { 𝐵 , 𝐶 } ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ↔ 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ) ) | |
| 93 | 91 1 92 | sylancr | ⊢ ( 𝜑 → ( 𝐺 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ↔ 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ) ) |
| 94 | 93 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐺 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ↔ ( 𝐺 : 𝐴 ⟶ { 𝐵 , 𝐶 } ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ) |
| 95 | 82 90 94 | 3bitr4d | ⊢ ( 𝜑 → ( ( 𝑆 ∈ 𝒫 𝐴 ∧ 𝐺 = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 ∈ 𝑆 , 𝐶 , 𝐵 ) ) ) ↔ ( 𝐺 ∈ ( { 𝐵 , 𝐶 } ↑m 𝐴 ) ∧ 𝑆 = ( ◡ 𝐺 “ { 𝐶 } ) ) ) ) |